
Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo
Induced from Symmetry

Ricardo Ralha1 · Gabriel Falcao1 · Joao Amaro1 · Vasco Mota2 · Michel Antunes3 ·
Joao Barreto2 · Urbano Nunes2

Abstract Traditional dense stereo estimation algorithms
measure photo-similarity to calculate the disparity between
image pairs. SymStereo is a new framework of match-
ing cost functions that measure symmetry to evaluate the
possibility of two pixels being a match. This article pro-
poses a fully functional real-time parallel 3D reconstruction
pipeline that uses dense stereo based photo-symmetry. The
logN variant of SymStereo achieves superior results for im-
ages with slanted surfaces, when compared with other algo-
rithms [1]. This is of particular interest for areas of computer
vision such as the processing of datasets for urban scene
reconstruction and also for tracking in robotics or intelli-
gent autonomous vehicles. The output results obtained are
analyzed by tuning distinct matching cost, aggregation and
refinement parameters, targeting the most suitable combi-
nations for slant dominated images. Also, the parallel ap-
proach for the aforementioned pipeline consists of a hybrid
dual GPU system capable of calculating from 2 up to 132
volumes per second for high- and low-resolution images, re-
spectively.

Keywords Dense stereo estimation · 3D Reconstruction ·
SymStereo · High resolution images · Parallel Processing ·
Multiple-GPU processing.

1 Instituto de Telecomunicações, Department of Electrical and Com-
puter Engineering, University of Coimbra, Portugal (E-mail: {rralha,
gff, jamaro}@co.it.pt).

2 Institute of Systems and Robotics, Department of Electrical
and Computer Engineering, University of Coimbra, Portugal (E-mail:
{jpbar, urbano}@isr.uc.pt).

3 Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg
(E-mail: michel.antunes@uni.lu).

1 Introduction

Nowadays, 3D reconstruction of urban scenes for navigation
systems has become a recurring topic. The end-application
greatly depends on the high quality of the generated map
but new challenges arise when reconstructing these types
of datasets. Urban scenes are mainly composed of slanted
surfaces, which makes them a very important issue to be
dealt with. Also, since nowadays we are dealing with high-
resolution data, a computationally demanding method can
generate consuming execution times.

In this paper, we address the problem of 3D reconstruc-
tion of slant dominated urban scenes for building 3D maps in
real time. Depending on the methods adopted and the char-
acteristics of the surface being reconstructed, these maps
usually need very intensive processing and still have many
imperfections. This can lead to reading errors by autonomous
systems that can compromise the mission.

The methods used to generate 3D maps using stereo
matching involve the calculation of disparity maps. It has
recently been proposed the measure of symmetry instead of
photo-similarity to compute these maps [1]. This method is
named SymStereo and originated a new group of symmetric
dense matching cost functions. The SymStereo framework
is composed of three functions: SymBT (modification of the
BT metric [2] for measuring symmetry instead of similar-
ity), SymCen (non-parametric symmetry metric based on the
Census [3] transform) and logN (uses a bank of log-Gabor
wavelets for quantifying symmetry) [1]. By testing the al-
gorithms against each other for different situations, Antunes
et al. [1] concluded that logN is more suited to deal with
slanted surfaces than SymBT and SymCen. Fig.1, shows that
for images composed of low textures and some disconti-
nuities (1a), logN over performs SymBT and SymCen by
presenting a smaller percentage of erroneous pixels than its
competing symmetry-based algorithms. For heavily slanted

2 Ricardo Ralha1 et al.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

% Density of disparity map

%
E

rr
o

r

BT
SymBT
log20
Census7
SymCen7

........

.

(a) Average percentage of disparity errors for low-textured images.

BT SymBT log20 Census7 SymCen7
0

2

4

6

8

10

12

14

16

18

%
 E

rr
o

r

(b) Percentage of disparity errors in heavily slanted images.

Fig. 1: Comparing different algorithms for generating disparity maps from slanted datasets (results reported in [1]).

images (1b), logN performs even better, indicating that this
algorithm suits more appropriately the calculation of dispar-
ities for slanted images.

Despite the good results, logN is a compute-intensive
algorithm that takes a lot of time when running on the
Central Processing Unit (CPU). Therefore, in order to ac-
celerate the code, this work introduces parallel computing
support. Currently, two main frameworks seem to domi-
nate the development of parallel code for processing on
Graphics Processing Units (GPUs): the Compute Unified
Device Architecture (CUDA) [4] and the Open Computing
Language (OpenCL) [5]. CUDA is exclusive to NVIDIA’s
GPUs while OpenCL is supported by a vast set of devices
such as CPUs, GPUs, Digital Signal Processors (DSPs) or
Field-programmable gate arrays (FPGAs). Due to portabil-
ity, OpenCL is an extremely popular framework used in a
vast number of studies by the parallel programming com-
munity. To illustrate this variety, recent works include [6]
and [7], where signal and image processing kernels’ perfor-
mance is evaluated on FPGAs, [8], with OpenCL kernels be-
ing used to simulate neural networks on CPUs, GPUs, mo-
bile GPUs and FPGAs, or [9], that explores two H.264/AVC
motion compensation kernels on CPU and GPU.

Despite being limited to a number of GPUs, CUDA is
highly optimized to NVIDIA’s architectures and will per-
form 10 to 20% better than OpenCL performing the same
task [10]. The CUDA framework was used to parallelize
the logN metric, allowing superior throughput performance
when compared to its sequential counterpart.

In fact, CUDA allows to develop a hybrid dual-GPU
real-time stereo parallel pipeline for the construction of 3D
maps using SymStereo’s matching cost function logN. In or-
der to improve the quality of reconstructed scenes, local ag-
gregation and visual enhancing post-processing algorithms
such as left-right consistency check and occlusion pixel fill-
ing were added to obtain depth maps with less imperfec-
tions and, consequently, higher-quality 3D maps. The com-
plete pipeline is parallelized and optimized using the CUDA

computing language, in order to fully exploit the processing
power of two top performer Nvidia GTX Titans.

The main contributions of this paper can be summarized
as:

– Full parallelization of the logN matching cost, aggrega-
tion method, left-right consistency check and 2D to 3D
volume mapping, creating a pipeline capable of generat-
ing 3D volumes in real-time for high- and low-resolution
images;

– Tuning of pipeline parameters, namely the number of
scales, shape-factor, scaling step, center frequency of the
mother wavelet, aggregation window and left-right con-
sistency check threshold, in order to evaluate the best pa-
rameters combinations for slant dominated images and
analyze the trade off between visual quality and process-
ing time.

The rest of the paper is organized as follows. Section
2 summarizes related work, section 3 features the logN al-
gorithm and section 4 presents the parallelization of the
pipeline. Section 5 discusses the experimental results and
section 6 closes the paper.

1.1 Notation

The pipeline proposed has six parameters essential for the
conducted study. Throughout the paper, they will be refer-
enced as follows: the number of scales of the log-Gabor fil-
ters is represented by N, the shape-factor is defined by Ω ,
the scaling step is depicted by s, the center frequency of the
mother wavelet is denoted by ω0, the aggregation window
is represented by Aw and, finally, the left-right consistency
check (LRCCheck) threshold is depicted by T.

Regarding the algorithms presented in this paper, A is the
W×H input image spectrum matrix, B represents the W×N
log Gabor coefficients matrix, C is the W ×H ×N filtered
input spectrum matrix and D and E are the W ×H×N left

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 3

and right side filtered input spectrum matrices, respectively.
These matrices are defined as f loat2 variables (Complex in
the algorithms) because they contain complex numbers.

DSI is the W ×H × drange + 1 Disparity Space Im-
age matrix, DispMap is the W ×H disparity map matrix,
DispMapL and DispMapR are the W×H disparity map ma-
trices calculated with the left and right images as reference,
respectively, DispMapLRC is the W ×H disparity map ma-
trix after the LRCCheck, DispMapF represents the W ×H
final disparity map matrix before the 3D reconstruction and,
finally, 3DMap is the W ×H × 3 3D map matrix. W and
H are the input image width and height, respectively, and
drange is the number of disparities to be represented in the
disparity map.

2 Related work

Depth maps can be calculated with two or more images
(multiview stereo) using sparse or dense stereo techniques.
Sparse stereo extracts potentially matchable image locations
(edges or object discontinuities) and then searches for cor-
responding locations in the other images [11]. This is useful
for matching profile curves, that occur at the boundaries of
objects. However, if we have to perform a 3D reconstruction
of an entire room or a street, where there are low textured
regions, sparse stereo is not the most appropriate solution.
In this case, dense stereo is used as it tries to find the corre-
sponding pixel for every pixel in the reference image. A tax-
onomy of algorithms used for two-image dense stereo can
be seen in [12]. We are not going to discuss multiview stereo
algorithms as they lie outside the scope of this paper but a
taxonomy is also available [13].

To generate depth maps for 3D reconstruction in dense
stereo, we can choose between global optimization or local
algorithms. Global stereo methods such as belief propaga-
tion [14], graph cuts [15] [16] or dynamic programming [17]
allow achieving good results but are computationally heavy
at a level that can compromise real-time operation. Lo-
cal methods like squared intensity differences [18] [19]
or absolute intensity differences [2] use an aggregation
method [20] [21] to compute the correct disparity. Com-
pared to global optimization, local algorithms have slightly
worse quality outcomes but are less heavy computationally.

Regarding 3D reconstruction, [22] describes a method
to generate a 3D mosaic representation of urban scenes cap-
tured by a camera on a mobile platform using a two step pro-
cedure that uses a segmentation-based stereo matching algo-
rithm. Despite providing good urban representations, they
are not calculated in real-time like the pipeline proposed
here and only compute mosaics for a 480x640 image res-
olution. We calculate 3D maps for higher resolution images.
In [23], the authors propose a new 3D reconstruction algo-
rithm that uses a sequential structure-from-motion technique

and depth maps calculated by segmentation-based stereo.
Similarly, this algorithm does not process data in real-time
like our does. 3D reconstructions can also be obtained with
the help of Microsoft’s Kinect [24]. The collection of depth
data is done by its sensors, enabling the reconstruction of
an environment. Despite collecting depth data in real-time,
the depth map treatment and 3D reconstruction is performed
in another interface, which does not perform in real-time.
In [25] a rare method for calculating 3D maps using hyper-
spectral images is presented. After computing various 3D
maps, one for each image at different wavelengths, a final
3D model is estimated considering the information of all
previously computed models. Performance wise, this is not
a real-time method and the maps calculated are for small
resolution images. In [26] the authors introduce a sequential
3D reconstruction system that uses dense stereo matching.
This pipeline is comprised of two phases, camera parame-
ter estimation and dense stereo correspondence matching. If
necessary, more image pairs can be added to the pipeline
to achieve better results. As before, this is not a real-time
method since it takes several seconds to calculate the final
3D map for an image with only one target. Finally, [27] pro-
poses a system with a sliding camera for 3D reconstruction
of indoor and outdoor scenes. The results shown are good
but the system isn’t currently able to perform real-time pro-
cessing.

In [28] the authors describe a multi-stage stereo algo-
rithm on a NVIDIA GeForce GTX 580 GPU using the Com-
pute Unified Device Architecture (CUDA) parallel program-
ming model [4], achieving 62 fps for small images. Sim-
ilarly, [29] presents a real-time local stereo algorithm, at-
taining 30 fps. [30] presents a real-time stereo method that
uses bitwise fast voting and achieves 93 fps on a NVIDIA
GeForce 8800 GTX using CUDA. For the same low reso-
lution image, the method proposed in this paper achieves
121 fps. A real-time stereo matching system running on a
NVIDIA GeForce GT 540M that achieves 20 fps is pre-
sented in [31], while our proposed pipeline achieves 80
fps for the same image resolution. A 3D reconstruction
technique for casual scenes with GPU acceleration by a
NVIDIA GeForce GT 740 is proposed in [32]. This algo-
rithm achieves a run time of 15 seconds for image reso-
lutions of 600x800, while our proposed method calculates
the final disparity map in 0.25 seconds for 375x1242 res-
olution images. Finally, a 3D environment sensing system
for autonomous vehicles is proposed in [33]. Running on a
NVIDIA GeForce GTX TITAN, this system achieves 5 fps
for 480x640 resolution images with a maximum of 40 dis-
parities. Our pipeline achieves 4 fps for 375x1242 resolution
images with 30 disparities.

Developments regarding the partial parallelization of the
SymStereo-based pipeline have been made recently. In [34],
logN was parallelized on a single-GPU machine and [35]

4 Ricardo Ralha1 et al.

. .O O'

I I'

IB I'B

Π0
Π1

Πdmax

Disp
arit

y in
cre

ases

Γdmax

Γ1

Γ0

. .

Similarity

O O'

I I'

IB

I'B

Φ0

Φ1

Φdmax

d)

D
isp

ar
ity

 in
cr

ea
se

s

d0

d1

dmax

c)b)a)

Fig. 2: Differences between Plane sweeping and Symstereo. While images a) and d) represent Plane Sweeping and Sym-
stereo, respectively, b) and c) depict how the DSI is originated with each method.

encompasses the study of the impact of the aggregation
stage on the final 3D volumes on a dual-GPU system. In
this paper, we create a full 3D pipeline for dual-GPU de-
vices, aiming for real-time execution. Moreover, a complete
dataset was captured to test the algorithm with high reso-
lution images and several parameters were tuned with the
objective of achieving superior visual results for images
with slanted surfaces, without significantly compromising
the processing speed of the pipeline.

3 Pipeline for 3D reconstruction

Stereo algorithms generally include the following steps:

1. Matching cost computation;
2. Cost (support) aggregation;
3. Disparity computation;
4. Disparity refinement;
5. Disparity to 3D maps conversion.

In this section, we explain the algorithms used in each phase
to calculate the final 3D map.

3.1 Matching cost computation; the logN algorithm

First, the matching function receives data from left and right
images, which are acquired by a stereo camera. The purpose
of the algorithm is to compute the matching costs by ver-
ifying the possibility of two pixels, one from each image,
corresponding to each other. This evaluation is performed
across all possible disparities and pixel locations. By doing
this, the Disparity Space Image (DSI) [36] is created. The
DSI is a 3D volume that, for each pair pixel-disparity, asso-
ciates the corresponding matching cost.

New advancements show that by using symmetry rather
than photo-similarity to evaluate the likelihood of two pix-
els being a match, stereo disparity estimation can improve

significantly, in particular for slanted images [1]. In Fig.2
are represented the differences between conventional stereo
matching by Plane Sweeping [37] and SymStereo. By exam-
ining the left side of the image, regarding Plane Sweeping,
it is noticeable that each possible disparity di is associated
with a virtual plane Φi, meaning that photo-similarity be-
tween Ib and I′b, that are the results of back-projecting I and
I′ onto Φi, is implicitly measured by the chosen matching
cost. By observing the right side of the image, in SymStereo
the virtual planes Πi that pass between the cameras intersect
the scene structure. Thus, the back-projection images are re-
flected with respect to the curve where that intersection oc-
curs, creating a mirroring effect. Also, each plane Πi corre-
sponds to an oblique plane Γi, which means that by choosing
the appropriate set of virtual cut planes Πi, the entire DSI
domain can be covered.

As a matching function, the objective of logN con-
sists of calculating the matching costs. To do so, it uses a
bank of log-Gabor filters for measuring symmetry and anti-
symmetry energy. The matching cost will be the joint energy
calculated by combining the symmetric energy with the anti-
symmetric equivalent. The N in logN stands for the number
of wavelet scales that are used to filter the input images.

The matching function can be divided in two phases: the
filtering and the computation of the joint energy.

Filtering phase: Consider two images, I and I′, and two
epipolar lines, one on each image, I(q0) and I′(q0), where q0
is a general pixel location . In this phase, the stereo pair will
be filtered with N log-Gabor wavelets. Since these are 1D
analytical filters and filtering occurs in the spectral domain,
a 1D Fourier transform has to be applied to both images.
Being I = F (I) the Fourier Transform along the epipolar
lines of I and G the matrix of coefficients of the filter, I .Gk
is calculated, for a given wavelet k, where Gk represents a
wavelet with the same length as the epipolar line.

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 5

In order to return to the time domain, an Inverse Fourier
Transform is applied. For a general pixel location q0 and
wavelet k, it can be deduced that

sk(q0)+ iak(q0) = F−1(I (q0).Gk), (1)

s′k(q0)+ ia′k(q0) = F−1(I ′ f (q0).Gk). (2)

I′f is I′ flipped horizontally, as it needs to be flipped be-
fore the filtering procedure.

Energy Calculation Phase: After filtering the two images,
the joint energy needs to be calculated. In order to properly
implement this procedure, the right-side signal needs to be
shifted by an amount di that depends on the virtual cut plane
Πi [1]. The flipped image becomes

Î(q0) = I′f (q0−di). (3)

With this, the symmetry (sS and aS) and anti-symmetry (sA

and aA) coefficients can now be calculated for a generic
epipolar line q0 with

sS
k(q0)+ iaS

k(q0) =
(
sk(q0)+ s′k(q0−d)

)
+

+ i
(
ak(q0)+a′k(q0−d)

)
, (4)

sA
k (q0)+ iaA

k (q0) =
(
sk(q0)− s′k(q0−d)

)
+

+ i
(
ak(q0)−a′k(q0−d)

)
. (5)

With the image being symmetric about the pixel location
q0, the real components sS and sA typically take high values
and the imaginary components aS and aA assume small val-
ues [38]. Taking this into account, the symmetry (ES) and
anti-symmetry (EA) energies can be established for the N
wavelet scale responses

ES(q0) =
∑

N−1
k=0 |s

S
k(q0)|− |aS

k(q0)|

∑k

√
(sS

k(q0))2 +(aS
k(q0))2

, (6)

EA(q0) =
∑

N−1
k=0 |a

A
k (q0)|− |sA

k (q0)|

∑k

√
(sA

k (q0))2 +(aA
k (q0))2

. (7)

The joint energy E comes as a combination of the sym-
metry and anti-symmetry energies

E = ES.EA. (8)

In Fig.3 it is possible to see the various stages of the
logN metric.

I'

+

I

DFT

IDFT

shift by di

Flip

DFT

IDFT

.

I'f

I'f

GkGk

I

I'f .Gk I .Gk

s'k(q0) + ia'k(q0)sk(q0) + iak(q0)

s'k(q0 - di) + ia'k(q0 - di)

Ei

Eq. 6 Eq. 7

Ei
A

Ei
S

Filtering

Phase

Energy

Calculation

Phase

Fig. 3: Depiction of the multiple steps comprising logN.

Wavelet scales: To understand the wavelet scales of the log-
Gabor filters, we must address the role of each parame-
ter. Fig. 4 illustrates the relation of the parameters with the
space-frequency response of the filter.

There are four parameters that define the wavelets: the
shape-factor Ω , the center frequency of the mother wavelet
ω0, the scaling step s, and the total number N of wavelets.
The shape-factor is related with the bandwidth of the filter
and defines a contour in the (ω , σ) domain. The first wavelet
scale G0 is uniquely defined by the center frequency ω0 and
the shape-factor Ω and s sets the distance between center
frequencies of successive wavelet scales along the contour.
More details on the design of the log-Gabor filters can be
found in [39].

3.2 Cost aggregation and disparity computation

There are two types of stereo algorithms: local and global.
Local algorithms rely on a window-based approach for ag-
gregation while global algorithms tend to solve a global op-
timization problem by finding the best disparity that mini-

6 Ricardo Ralha1 et al.

ω

σ

s

↑!"#$%#&'()↓*+,'-,.)#/0#&0)

,++"1+"-,0#)!1")0#/0%"#2)"#3-1&*

↓!"#$%#&'() ↑*+,'-,.)#/0#&0)

,++"1+"-,0#)!1")0#/0%"#.#**)"#3-1&*

ω0G0

G1

GN−1

Gk

ω1

Ω
Gk+p

ωN−1

Fig. 4: (Qualitative) space-frequency behaviour of the log-
Gabor wavelets Gk . The horizontal axis refers to the spatial
support σ of the filter kernel, while the vertical axis concerns
the response frequency ω .

mizes a global cost function that is composed by data and
smoothness terms. A window-based aggregation step was
implemented alongside logN to aggregate the determined
matching costs, thus making the SymStereo-based pipeline
a local method to the calculation of disparity maps.

To estimate the correct disparity for a pixel, the sum of
the matching costs is calculated over a square window Aw.
This is done for every disparity value. The final disparity
chosen will be the disparity associated with the smallest sum
of values calculated over the square window.

3.3 Disparity refinement

The disparity refinement stage is used to correct some dis-
parities that were wrongly computed by filling occluded pix-
els on the depth map. Occluded pixels are only visible in one
of the original images. As seen in Fig. 5, this step can be
divided in two sub-stages: left-right consistency check and
disparity enhancement.

Left-Right Consistency Check: Two disparity maps are nec-
essary for this stage, one computed using the left image as
reference and the other with the right image. By subtracting
the disparities of corresponding pixels on each depth map, it
is verifiable that if the absolute value is superior than a given
threshold T, then the pixel is considered occluded.

Disparity enhancement: This stage fills the occluded pixels
in the disparity map. The algorithm starts by finding the first
occluded pixel, beginning in the top left corner of the dispar-
ity map. Then, a 4-way search is performed to find the first
non-occluded pixel in each way, left, right, up and down.
The disparity selected is the median between the four values
that were found. If no value is found in one of the ways, the

median is calculated between the other three values and so
on. This is done for all occluded pixels in the disparity map.

The pixels that have already been filled are considered in
the calculation of the disparities for the next occluded pixels.
Therefore, due to these dependencies between pixels, this
stage is confined to the CPU.

3.4 From disparity maps to 3D views

To calculate the 3D volume, we map 2D coordinates into
3D:

Z = (f×b)/D; (9)

X = ((x− cx)×Z)/ f ; (10)

Y = ((y− cy)×Z)/ f ; (11)

where f is the focal length (in pixels), b represents the dis-
tance between the two cameras (in meters), cx and cy are the
coordinates of the principal point (in pixels) and D is the
disparity of the pixel.

4 Parallelizing the pipeline

The parallelization of the pipeline aims to compute 3D vol-
umes in real-time. For that purpose, we exploit a hybrid ar-
chitecture, using a CPU and two Nvidia GTX Titans GPUs.
The Compute Unified Device Architecture (CUDA) paral-
lel programming framework [4] is used since it is optimized
for extracting superior levels of performance from Nvidia’s
GPUs. The parallel pipeline is depicted in Fig. 5.

GPU0

Aggregation

DSI0

I I'

LRCCheck

DispMap0

2D-3D

3D Map

GPU1

Aggregation

DSI1

If I'f

DispMap1

Disp. Enhan.

CPU

DispMap

DispMap'

G

Disparity

Refinement

Fig. 5: 3D parallel pipeline representation, where I and I′

are the left and right images, I f and I′f are the left and right
images flipped and G represents the Gabor coefficients.

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 7

Disparity Map
filtered input spectrum

AggregationEnergy calculation

.

log-Gabor ltering
log Gabor coeff.

matrix

H

maxmaxmax max

choose

disparity

H

H

H

input image
spectrum

H

.

.

.

H

HHH
HH

+

.

H

DSI

right side

.

.

.

.

.

.

H

left side

...

le
ft
 s

id
e

rig
ht s

id
e

Grid
Block (0,K)

...

Block (0,3)

...

Block (0,4)

...

...

Block (R-1,3)

...

Block (R-1,4)

...

Block (R-1,K)

...

.
.
.

.
.
.

.
.
.

...

Block (0,0)

...

Block (0,1)

...

Block (R-1,0)

...

Block (R-1,1)

...

.
.
.

.
.
.

Block (0,T-1)

...

Block (0,T-3)

...

Block (1,T-2)

...

Block (R-1,T-3)

...

Block (R-1,T-2)

...

Block (R-1,T-1)

...

.
.
.

.
.
.

.
.
.

...

...

Block (0,2)

...

Block (R-1,2)

...

.
.
.

...

...

.

.

.

N

A - 2 A - dmin

B - dmax B - dmin

drange + 1

drange + 1

drange + 1

H

N

N N

W

ES EA

Fig. 6: Representation of the log-Gabor filtering, energy calculation and aggregation kernels. (T,R) are the number of blocks
in the (x,y) directions, W and H are the width and height of the input images, respectively, N is the number of wavelets,
dmin and dmax are the minimum and maximum disparities (in this example dmin = 1 and dmax = 6), respectively, A and B
correspond to the red and blue pixels, respectively, and drange is the difference between dmax and dmin.

4.1 Memory performance analysis

The Nvidia GeForce TITAN GPU has a complex memory
hierarchy [40] that can be exploited in order to take full ad-
vantage of the GPU’s capabilities. Besides the GPU main
memory, the proposed implementation uses the L1 and L2
level cache of the device to increase memory throughput
and enhance the pipeline’s performance. Regarding shared
memory, since the data block size is higher than the avail-
able shared memory, which at the finest level of thread-
granularity forces several memory swaps to occur, the use
of this technique decreases efficiency due to a high num-
ber of transaction overheads accessing the global memory.
Therefore, this option was discarded from the optimized so-
lution.

Data transfers between CPU and GPU can have a signif-
icant impact on the final processing time. In order to mini-
mize this effect and achieve higher throughput performance,
we changed the way data was allocated in the CPU’s main

memory. By default, when allocating data in the host mem-
ory, the system performs a pageable allocation. However,
the device is not able to transfer data directly from pageable
memory. To perform this transfer, a temporary pinned array
is created on the host memory so that data can be transferred
from the pageable section to the array and only then trans-
ferred to the device memory [4]. To avoid this intermediate
step, we perform pinned allocations in the host, minimizing
data transfer latency.

4.2 LogN parallelization

Fig. 3 shows the LogN algorithm. To parallelize it, three
kernels were created: the flip, filtering and energy calcu-
lation kernels. To perform the discrete-time Fourier trans-
form (DTFT) and inverse discrete-time Fourier transform
(IDTFT) on the GPU, the optimized CUFFT API [41] is
used. Single-precision floating-point variables are employed

8 Ricardo Ralha1 et al.

to store the FFT values since double-precision variables
have no visible impact on the final results and have the draw-
back of allocating more GPU memory than single-precision
ones.

Filtering phase on the GPU: In this phase, two of the three
kernels mentioned previously are used, where each thread
processes one image pixel. The flip kernel has half the
threads of the remaining kernels. Since the objective is to flip
the input matrix horizontally, only half of the matrix width
needs to be swept. Regarding the filtering kernel, each line
of the input spectrum has to be multiplied element-wise by
every line of the log-Gabor coefficients matrix. This way, the
output of the kernel consists of N matrices used in the pos-
terior energy calculation phase. This is illustrated in the left
side of Fig. 6 and the kernel is shown in Algorithm 1. The
computational workload of this kernel depends on the num-
ber of wavelets chosen for the filter. The larger the number
of wavelets, the larger the filter becomes.

Algorithm 1 Log-Gabor filtering GPU parallel kernel

// j and i are the thread values in x and y,

↪→ respectively

if(j < W && i < H)

{

for(int z = 0; z < N; z++)

{

C[j][i][z].x = A[j][i].x * B[j][z].x;

C[j][i][z].y = A[j][i].y * B[j][z].y;

}

}

Energy calculation on the GPU: This operation represents
a time consuming phase that depends on the image dimen-
sions, the disparity range and the number of scales chosen.
The inputs are the images after being filtered by the log-
Gabor wavelets and the output is the DSI. Each thread pro-
cesses the joint energy (8) corresponding to every disparity
for one pixel. For the left side pixel, the real (sk) and imagi-
nary (ak) components are always the same, for any disparity.
For the right side pixel, these components (s′k and a′k) depend
on the disparity value ((4) and (5)) since the disparity value
defines the pixel of the right side to be evaluated. For exam-
ple, the middle of Fig. 6 depicts a thread calculating every
joint energy for pixel B of the left side associated with ev-
ery pixel from B− dmin to B− dmax of the right side. For
pixel A, since drange+1 exceeds the number of pixels left
for the edge of the matrix, only the joint energies associ-
ated with the two pixels on the edge are calculated. The DSI
has drange+ 1 matrices containing the costs of each pixel
related to each disparity. Algorithm 2 illustrates our applica-
tion’s kernel.

Algorithm 2 Energy calculation GPU parallel kernel

// dmin must be superior to 0

// j and i are the thread values in x and y,

↪→ respectively

if(j < W && i < H)

{

Complex C1;

Complex C2;

for(int d = 0; d < d_range ; d++)

{

float sum_num1 = 0.0f;

float sum_den1 = 0.0f;

float sum_num2 = 0.0f;

float sum_den2 = 0.0f;

if(j >= d + dmin)

{

for(int z = 0; z < N ; z++)

{

// C1 and C2 represent the symmetry and anti-symmetry

↪→ coefficients

C1.x = D[j][i][z].x + E[j-(d+dmin)][i][z].x;

C1.y = D[j][i][z].y + E[j-(d+dmin)][i][z].y;

C2.x = D[j][i][z].x - E[j-(d+dmin)][i][z].x;

C2.y = D[j][i][z].y - E[j-(d+dmin)][i][z].y;

// Factors associated to the symmetry energy

sum_num1 += fabsf(C1.x) - fabsf(C1.y);

sum_den1 += hypotf(C1.x , C1.y);

// Factors associated to the anti-symmetry energy

sum_num2 += fabsf (C2.y) - fabsf(C2.x);

sum_den2 += hypotf(C2.x , C2.y);

}

DSI[j][i][d] = ((sum_num1 + sum_den1) *

↪→ (sum_num2 + sum_den2)) / (sum_den2 * sum_den1);

}

}

}

4.3 Aggregation and refinement parallelization

This section encompasses four algorithms. The disparity en-
hancement algorithm is not parallelizable, which means that
it runs on the host side. The remaining three kernels, namely
aggregation, consistency check and 3D conversion run on
the device, which implies that data needs to be transferred
from the GPU to the CPU and then back to the GPU. This is
depicted in Fig. 5.

Aggregation on the GPU: Here, each thread calculates the
sum of the matching costs over the defined square window,
for each disparity, and chooses the disparity with the lowest
sum of costs (right side of Fig. 6). Like in previous kernels,
each thread is associated to a single pixel. This kernel can be
computationally costly, depending on the window size and
disparity range chosen. With a large window size, the pro-

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 9

cessing time of the pipeline can soar, damaging processing
time performance. The kernel can be seen in Algorithm 3.

Algorithm 3 Aggregation GPU parallel kernel

// j and i are the thread values in x and y,

↪→ respectively

int Win = floor(0.5 * Aw);

if (j >= Win && j < W - Win && i >= Win && i < H - Win)

{

float temp = 0.0f;

float dsi_sum;

float dsi_disp;

int count = 0;

// The DSI sum for the minimum disparity must be

↪→ calculated separately. The DSI values within the

↪→ aggregation window are added

for(int z = i - Win; z <= i + Win; z++)

for(int p = j - Win; p <= j + Win; p++)

temp += DSI[p][z][count];

// The values associated with the minimum disparity are

↪→ stored

dsi_sum = temp;

dsi_disp = dmin;

count = 1;

// The other DSI sums area calculated for each disparity

for (int d = dmin + 1; d <= dmin + drange; d++)

{

temp = 0;

for(z = i - Win; z <= i + Win; z++)

for(p = j - Win; p<= j + Win; p++)

temp += DSI[p][z][count];

// If the new sum is smaller than the old one, a new

↪→ disparity is saved

if (dsi_sum > temp)

{

dsi_sum = temp;

dsi_disp = d;

}

count++;

}

// The disparity associated with the minimum DSI sum is

↪→ saved

DispMap[j][i] = dsi_disp;

}

Refinement on the GPU: The consistency check phase in-
volves two GPUs working in parallel, as we need two dispar-
ity maps to be generated and compared. With two GPUs, the
maps are calculated concurrently, saving considerable pro-
cessing time. Again, each thread verifies the consistency of
the disparity associated to a single pixel. Algorithm 4 high-
lights this kernel.

As mentioned before, the algorithm used to fill occluded
pixels should not be performed on the GPU, hence data must
be transferred to the host’s memory in order to be processed
by the CPU. When all calculations are over, the data can be
transferred back to the device’s memory.

Algorithm 4 LRCCheck GPU parallel kernel

// j and i are the thread values in x and y,

↪→ respectively

if(j < W && i < H)

{

int xr, xlr;

xr = j - DispMapL[j][i];

// If the displacement leads outside the matrix

↪→ boundaries, the pixel is considered occluded

if(xr < 1)

DispMapLRC[j][i] = 0;

else

{

xlr = xr + DispMapR[xr][i] ;

// If the absolute difference is superior to the

↪→ threshold, the pixel is considered occluded

if (abs(j - xlr) < T)

DispMapLRC[j][i] = DispMapL[j][i];

else

DispMapLRC[j][i] = 0;

}

}

3D Reconstruction on the GPU: At the end of the pipeline,
the final disparity map is used to calculate the 3D coordi-
nates for the 3D scene reconstruction. Each thread, corre-
sponding to one pixel, is responsible for calculating the three
coordinates necessary to generate the 3D map, according
to (9), (10) and (11). Algorithm 5 depicts this kernel. With
all pixels processed, data can be transferred from the device
to the host.

Algorithm 5 3D reconstruction GPU parallel kernel

// j and i are the thread values in x and y,

↪→ respectively

if(j < W && i < H)

{

float Z = (f * b) / DispMapF[j][i];

3DMap[j][i][0] = ((j - cx) * Z) / f;

3DMap[j][i][1] = ((i - cy) * Z) / f;

3DMap[j][i][2] = Z;

}

5 Experimental Results

To present the results, this section has been split into three
parts: the first one focusses on the tests performed to tune
the pipeline parameters; the second one discusses the visual
results of the 3D volumes generated; and the third one em-
phasizes the processing times of the method.

The pipeline presented here was developed using CUDA
6.5 and uses a GeForce GTX Titan dual-GPU workstation
with an i7 4790k @ 4 GHz, 32 GB of RAM running Ubuntu
14.04.1 and GCC 4.8.2.

10 Ricardo Ralha1 et al.

To calculate the percentage of error in non-occluded ar-
eas, the absolute difference between the calculated disparity
map and the matching ground truth image is evaluated. For
corresponding pixels in each map, if the difference is greater
than one, then the disparity of the processed map’s pixel is
wrong.

The only parameter that maintains the same value
throughout the tests is the consistency check threshold T
since its variation has a small impact on the final results.
It was manually set to 3.

To test the pipeline presented in this paper, the KITTI
stereo dataset [42] was chosen since it is mostly composed
of urban scenes with slanted surfaces. The KITTI stereo
benchmarking [43] was utilized in order to evaluate the
pipeline relatively to other modern methods capable of com-
puting disparity maps of urban datasets. For the benchmark-
ing a disparity range of 0 to 109 was used and the error cal-
culation has a 3 pixel margin. Also, all tested images are
rectified. This means that a geometric transformation is per-
formed to each image pair in order for them to be horizon-
tally aligned. This is extremely important since logN only
searches for corresponding pixels on matching horizontal
lines.

This benchmark compares CPU and GPU implementa-
tions. It is important to note that different stereo vision algo-
rithms require distinct parallelization efforts. Usually, local
stereo or semi-global matching algorithms suit better paral-
lelization while global matching algorithms are less likely to
be implemented on GPUs. This benchmark has a large va-
riety of algorithms and while some can be more efficiently
implemented on GPUs, the final map results are addressed
and compared in Table 2.

5.1 Parameter tuning and benchmarking

The objective is to create fast and high quality 3D re-
constructed images with slanted surfaces. With that goal
in mind, various combinations of the already mentioned
pipeline parameters were applied to different sets of images;
one image from a dataset we created (820x1142 pixels); six
images from the KITTI dataset [42] (375x1242 pixels); one
image from the synthetic Tunnel dataset [44] (300x400 pix-
els); another image from the Tsukuba set [12] (288x324 pix-
els); and, finally, an image from the Oxford Corridor set
(256x256 pixels). The Tsukuba image does not contain slant
but is used for reference in this paper. The images of the
KITTI and our dataset were given letters from ’A’ to ’E’ and
are represented in Fig. 8 and Fig. 11 through 14.

The original tests performed in [1] were carried out us-
ing specific values for each parameter. That combination is
used in this paper and it is called reference combination,
where N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and, addi-
tionally, T=3. With these values, an equilibrium is reached

by not compromising either textured or textureless regions.
In fact, this study has been made before [1] and lies out-
side the scope of this paper. In Fig. 7 the Oxford Corridor,
Tsukuba and Tunnel disparity maps calculated with the ref-
erence combination are shown, using the proposed parallel
processing pipeline.

(a) Oxford Corridor set

(b) Tsukuba set

(c) Tunnel set

Fig. 7: a) Oxford Corridor; b) Tsukuba; c) Tunnel image;
original image, ground truth and disparity map generated us-
ing the implemented pipeline.

The tests performed aim to show the impact of the var-
ious parameters on the disparity maps and to find the best
combination for images with slanted surfaces. Increasing the
number of wavelets will let the filter have a larger range, re-
acting better to images with textureless regions. The shape
factor changes the value of the center frequency of each
wavelet, giving us different results. The higher the scaling
step, the bigger the difference between the center frequen-
cies of each wavelet. Choosing the right center frequency
for the first wavelet is crucial, as it can change the results
drastically. With a high first frequency, the disparity map
yields better results for textured regions (Fig. 4). Finally, a
large aggregation window corrects some wrong disparities
but affects the definition on the discontinuities. The changes
that occur in image ’A’ by changing the parameters can be
observed in Fig. 8. The alteration of these parameters has
a large impact on the final disparity maps. This is why it
is crucial to reach an optimal combination for our group of
images.

By processing disparity maps (trying different combi-
nations of parameters that can be found in Table 1) for

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 11

(a) Original Image ’A’ (b) N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and T=3

(c) N=15 (d) N=30

(e) Ω=0.35 (f) Ω=0.75

(g) s=1.02 (h) s=1.08

(i) W0=0.2 (j) W0=0.3

(k) Aw=3 (l) Aw=15

Fig. 8: Example of parameter variation effects for the KITTI dataset image ’A’. The aim is to show the effects of changing
the value of different parameters and the elevated degree of freedom disposable for parameter variation. Only one parameter
is changed in each row. The others maintain its reference values, shown in b).

12 Ricardo Ralha1 et al.

Table 1: Combinations used in the tests with ground truth
verification for the Oxford Corridor, Tsukuba, Tunnel (1, 2,
3, 4) and KITTI (5, 6, ..., 15) datasets.

Parameters

Combination N Ω s Wo Aw T

1 20 0.55 1.05 0.25 15 3
2 30 0.35 1.08 0.20 15 3
3 15 0.55 1.05 0.20 15 3
4 15 0.35 1.02 0.30 15 3
5 30 0.55 1.08 0.25 15 3
6 30 0.55 1.08 0.20 15 3
7 30 0.55 1.08 0.30 15 3
8 20 0.55 1.08 0.20 15 3
9 20 0.35 1.08 0.20 15 3

10 30 0.35 1.05 0.20 15 3
11 30 0.35 1.08 0.30 15 3
12 30 0.55 1.05 0.02 15 3
13 30 0.35 1.08 0.25 15 3
14 20 0.35 1.08 0.25 15 3
15 30 0.35 1.08 0.20 15 3
16 30 0.35 1.05 0.25 15 3
17 15 0.35 1.08 0.25 15 3

three images and comparing them with the ground truth pro-
vided, the accuracy of the pipeline was tested. The results
are shown in Fig. 9, with the Tunnel image being the most
accurate. Combinations ’2’, ’3’ and ’4’ provide the best re-
sults for the Oxford Corridor, Tsukuba and Tunnel images,
respectively.

1 2 3 4
0

5

10

15

20

25

Parameter combinations

%
 E

rr
o

r
n

o
n

�

o
c
c
lu

d
e

d
 a

re
a

s

Oxford Corridor

Tsukuba

Tunnel

Fig. 9: Test results for the Oxford Corridor, Tsukuba and
Tunnel images with ground truth verification, using param-
eter combination from Table 1.

In order to find the combination that would produce the
best 3D map, the tests taken encompassed the creation of
several disparity maps of twenty training images from the
KITTI dataset by combining all parameters. Fig. 10 shows

the pipeline accuracy for images ’B’ and ’C’ (the only ones
presented in this paper with ground truth, images ’A’, ’D’
and ’E’ don’t have a ground truth image) of the KITTI
dataset. The pipeline produces results with a low error per-
centage. The combinations used were the best performing
combinations of the tests taken with the KITTI training
dataset (where the error variation from the best combination
’5’ to combination ’17’ is less than 1%) and can be found in
Table 1. The pipeline parameters affect visual results as well
as processing times. Therefore, instead of choosing com-
bination ’5’ to compute the disparity maps, we opted for
combination ’8’ because it significantly diminishes the final
pipeline times (time analysis in section 5.3) and the error
percentage difference is only of 0.32%.

5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

8

9

10

Parameter combinations

%
 E

rr
o
r

n
o
n

�

o
c
c
lu

d
e
d
 a

re
a
s

Image B

Image C

Fig. 10: Test results for images ’B’ and ’C’ (Figures 11
and 12) of the KITTI dataset with ground truth verification,
using parameter combination from Table 1.

Disparity maps of tested images ’B’ to ’E’ can be seen in
Fig. 11 through 14. The maps computed with combination
’5’ show a significant improvement when compared with the
ones calculated with the reference combination.

With the chosen parameter combination, our algorithm
was benchmarked [43] on the 29th October 2015, achiev-
ing positive results, with an error of less than 10% for non-
occluded areas, less than 12% for occluded areas and the
8th best processing time (considering only better perform-
ing methods), which is an important highlight for a com-
putationally heavy dense stereo algorithm when compared
to sparse stereo algorithms. The results are presented in Ta-
ble 2.

The ELAS algorithm is a sparse stereo method since
it resorts to support points (image points that due to their
uniqueness can be robustly matched) for stereo matching.
This makes the algorithm capable of handling object dis-
continuities much better than the SymStereo-based pipeline.

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 13

(a) Original Image ’B’

(b) N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and T=3

(c) N=20, Ω=0.55, s=1.08, W0=0.2, Aw=15 and T=3

Fig. 11: Test results for the KITTI dataset image ’B’.

(a) Original Image ’C’

(b) N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and T=3

(c) N=20, Ω=0.55, s=1.08, W0=0.2, Aw=15 and T=3

Fig. 12: Test results for the KITTI dataset image ’C’.

(a) Original Image ’D’

(b) N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and T=3

(c) N=20, Ω=0.55, s=1.08, W0=0.2, Aw=15 and T=3

Fig. 13: Test results for the KITTI dataset image ’D’.

(a) Original Image ’E’

(b) N=20, Ω=0.55, s=1.05, W0=0.25, Aw=9 and T=3

(c) N=20, Ω=0.55, s=1.08, W0=0.2, Aw=15 and T=3

Fig. 14: Test results for the created dataset image ’E’.

14 Ricardo Ralha1 et al.

Table 2: KITTI dataset benchmarking [43] (http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?
benchmark=stereo), as of 29th October 2015, with pipeline results marked. Out-Noc and Out-All are the percentage
of erroneous pixels for non-occludded zones and in all, respectively, Avg-Noc and Avg-All are the average pixel errors for
non-occludded zones and in all, respectively, and Density is the percentage of pixels provided for evaluation by the method.

Rank Method Out-Noc Out-All Avg-Noc Avg-All Density Runtime Environment

1 MC-CNN-acrt 2.43 % 3.63 % 0.7 px 0.9 px 100.00 % 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
2 Displets 2.47 % 3.27 % 0.7 px 0.9 px 100.00 % 265 s > 8 cores @ 3.0 Ghz (Matlab + C/C++)
3 MC-CNN 2.61 % 3.84 % 0.8 px 1.0 px 100.00 % 100 s Nvidia GTX Titan (CUDA, Lua/Torch7)

...
20 MBM 4.35 % 5.43 % 1.0 px 1.1 px 100.00 % 0.20 s 1 core @ 3.0 Ghz (C/C++)
24 AARBM 4.86 % 5.94 % 1.0 px 1.2 px 100.00 % 0.25 s 1 core @ 3.0 Ghz (C/C++)
27 AABM 4.97 % 6.04 % 1.0 px 1.2 px 100.00 % 0.12 s 1 core @ 3.1 Ghz (C/C++)
29 rSGM 5.03 % 6.60 % 1.1 px 1.5 px 97.22 % 0.20 s 4 cores @ 2.6 Ghz (C/C++)
31 RBM 5.18 % 6.21 % 1.1 px 1.3 px 100.00 % 0.20 s 1 core @ 3.0 Ghz (C/C++)
38 SNCC 5.40 % 6.44 % 1.2 px 1.3 px 100.00 % 0.11 s 1 core @ 3.1 Ghz (C/C++)
46 Toast2 6.16 % 7.42 % 1.2 px 1.4 px 95.39 % 0.03 s 4 cores @ 3.5 Ghz (C/C++)

...
60 ELAS 8.24 % 9.96 % 1.4 px 1.6 px 94.55 % 0.30 s 1 core @ 2.5 Ghz (C/C++)

...
67 SymST-GP 9.79 % 11.66 % 2.5 px 3.3 px 100.00 % 0.254 s Dual - Nvidia GTX Titan (CUDA)

...
86 ALE-Stereo 50.48 % 51.19 % 13.0 px 13.5 px 100.00 % 50 m 1 core @ 3.0 Ghz (C/C++)
87 MEDIAN 52.61 % 53.67 % 7.7 px 8.2 px 99.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
88 AVERAGE 61.62 % 62.49 % 8.0 px 8.6 px 99.95 % 0.01 s 1 core @ 2.5 Ghz (C/C++)

Additionally, it also uses plane fitting, that limits the search
range for corresponding pixels, saving processing time, and
has left-right consistency check and post-processing phases
to correct pixel disparities [45].

Unlike ELAS, the pipeline presented in this paper is a
straightforward dense stereo implementation. This means
that it does not have any techniques, like plane fitting, to
save processing time and speed pixel matching. Despite not
excelling in object discontinuities, the algorithm behaves ex-
tremely well for low-textured regions and it has some sim-
ilarities with ELAS like the consistency check and post-
processing stages.

5.2 3D reconstruction of urban scenes with slant

The obtained 3D reconstructions can be observed in differ-
ent views (frontal and lateral) in Fig. 15. The close analy-
sis of the reconstructions shows that around discontinuities
there are some wrongly calculated pixels. For example, in
Fig. 15(h), the trunk of the tree surrounded by the wall of
one of the houses in the background is an error, since the
trunk and the wall were calculated as being in the same dis-
parity zone.

When evaluating reconstructions, an important feature is
the sky. It is one of the main noise sources existent in most
tested images and, since it belongs to the infinite plane, a
correct disparity estimation is impossible. Sky perturbation
is visible in Fig. 15(j).

The proposed pipeline is able to robustly handle slanted
surfaces. This is observable in every side view of the afore-
mentioned scenes. By using the calculated parameter con-
figuration, the algorithm was optimized to this kind of sce-
narios. This is where we can see the strength of the logN
matching cost and the versatility that it provides for differ-
ent situations.

More examples and videos of the generated 3D recon-
structions are available at http://montecristo.co.it.
pt/3DReconstructions/.

5.3 Numerical results

Results seem to indicate that the pipeline parameters are free
to change without consequence regarding computational ef-
fort. Unfortunately, this is not true as some parameters have
a high impact on the processing time of the pipeline. Of the
six tuned parameters, N and Aw have visual and processing
impact while Ω , s, W0 and T only have visual impact. An-
other parameter has a high impact, especially in processing
time: the disparity range. Each one of the three parameters
has a different impact in processing speed. By increasing the
value of N, a larger log-Gabor coefficients matrix is created.
This influences the transfer times of the matrix coefficients
to the GPU, the log-Gabor filtering and the energy process-
ing kernels that run on the GPU. Aw only influences the ag-
gregation stage but the disparity range impacts not only this
stage as the posterior energy calculation phase.

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://montecristo.co.it.pt/3DReconstructions/
http://montecristo.co.it.pt/3DReconstructions/

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 15

(a) Front 3D Reconstruction (b) Side 3D Reconstruction

(c) Front 3D Reconstruction (d) Side 3D Reconstruction

(e) Front 3D Reconstruction (f) Side 3D Reconstruction

(g) Front 3D Reconstruction (h) Side 3D Reconstruction

(i) Front 3D reconstruction (j) Side 3D reconstruction

Fig. 15: KITTI dataset images 3D reconstruction: ’A’, ’B’, ’C’, ’D’, ’E’ w/ N=20, Ω=0.55, s=1.08, W0=0.2, Aw=15 and T=3.

16 Ricardo Ralha1 et al.

Table 3: Volumes per second and pipeline times (ms) with the variation of the number of scales, the disparity range and the
aggregation window for the five resolutions of the tested images. The values highlighted are the processing times with the
reference combination and with the combination for the best visual results obtained. The corresponding volumes per second
are represented in rows ”Volumes p/sec” 1 and ”Volumes p/sec” 2, respectively.

Image Resolution

256x256 288x384 300x400 375x1242 820x1142

Aw N / Range d=12 d=22 d=32 d=6 d=16 d=26 d=45 d=65 d=85 d=70 d=110 d=150 d=155 d=185 d=215

15 3.67 4.82 6.02 4.28 5.68 7.40 11.21 14.51 17.82 69.10 95.11 119.52 249.28 283.98 329.95
3 20 4.20 5.60 7.20 4.85 6.64 8.82 13.78 18.10 22.35 85.55 118.57 150.64 310.45 355.93 397.66

30 5.21 7.33 9.66 6.05 8.81 12.14 20.13 26.68 33.17 124.31 175.31 220.10 452.10 525.12 590.81

15 4.55 6.44 8.23 5.04 7.22 9.87 17.01 22.98 28.50 97.96 139.80 181.49 382.45 415.25 482.29
9 20 4.98 7.56 9.48 5.78 8.28 11.35 19.69 26.59 33.04 113.92 163.03 209.83 431.61 500.21 565.89

30 6.11 9.04 11.99 6.86 10.68 14.82 26.11 35.10 43.37 153.88 218.03 279.48 575.29 668.68 755.79

15 6.46 9.82 13.21 6.53 10.72 15.34 28.68 39.4 50.05 162.36 234.27 301.25 617.92 719.40 832.10
15 20 7.11 10.75 14.51 7.19 11.70 16.93 31.35 42.99 54.63 176.84 254.00 335.76 680.37 794.88 909.39

30 8.07 12.44 17.24 8.36 14.14 20.27 37.77 51.72 64.74 214.28 313.61 399.12 822.86 972.74 1099.37

Volumes p/sec 1 132.3 120.8 37.6 6.1 2
Volumes p/sec 2 80.4 93.3 43.5 4 1.25

In Table 3 the processing times depending on Aw, N and
the disparity range are shown, for five image resolutions. It
is noticeable that Aw greatly increases the final processing
times, especially in larger images, and N is the parameter
that least influences the throughput performance. The dis-
parity range is chosen depending on the different depths of
various objects belonging to the scene. For every image, a
range of disparities that fits the represented scene is needed.
Therefore, it is very important to reach a compromise be-
tween the parameters, as their variation has a high impact
on the number of maps generated per second.

In the tests performed, disparity ranges of 22, 16, 65, 110
and 185 for the Oxford Corridor, Tsukuba, Tunnel, KITTI
and our dataset images, respectively, were used. The analy-
sis of Table 3 concludes that the pipeline is able to process,
for each image, 132.3, 120.8, 37.6, 6.1 and 2 volumes per
second, respectively, with the reference combination. For
the best quality results in each image, the effects of changing
the parameters are obvious. The rates of generated volumes
diminished (excluding the Tunnel image) being 80.4, 93.3,
43.5, 4 and 1.25 for each of the aforementioned image reso-
lutions.

Fig. 16 compares the CPU implementation with the GPU
pipeline for an 820x1142 image resolution, with the refer-
ence combination. As predicted, the logN and aggregation
stages are the most time consuming phases of both imple-
mentations but there are differences. In the CPU implemen-
tation, the SymStereo and aggregation phases must be run
twice sequentially to calculate the two disparity maps for the
LRCCheck phase, while in the GPU implementation, each
device calculates one disparity map concurrently, diminish-
ing the processing time. Regarding post-processing stages,
in the CPU implementation the most time consuming phase
is the LRCCheck algorithm, while in the GPU approach the

CPU

Time (s)

0 53.01 76.65 129.66 153.30 153.36 153.56

(a) CPU implementation taking approximately 153 seconds

CPU

GPU 1

GPU 0

Time (ms)

0 2.3 303.6 480.4 481.3 499.9 500.2

(b) GPU implementation taking approximately 500 milliseconds

Memory Transfers SymStereo Aggregation Post-Processing

Fig. 16: CPU vs GPU pipeline comparison for an 820x1142
resolution image, with the parameters reference combina-
tion. The reported speedup for the pipeline is 307×. Please
note that the scale in a) represents seconds while in b) mil-
liseconds.

occluded pixel filling algorithm represents the most inten-
sive one since it cannot be parallelized and thus runs on the
CPU. Finally, despite having a small impact on the GPU
implementation, memory transfers between devices are an
important part of the pipeline.

Table 4 shows the speedup obtained for each individual
kernel. The LRRCheck kernel presents a speedup of 627x,
the highest for all analyzed kernels. Regarding pipeline
speedup for each image resolution, a massive speedup is ob-

Parallel Refinement of Slanted 3D Reconstruction using Dense Stereo Induced from Symmetry 17

served in the achieved processing times, in Table 5, as each
image resolution registers a boost of 173x, 217x, 252x, 291x
and 307x, respectively.

Table 4: Individual kernel speedup for an 820x1142 resolu-
tion image, with the parameters reference combination.

Kernel CPU (s) GPU (ms) Speedup

SymStereo 53.01 300.34 353×
Aggregation 23.64 176.81 267×
LRCCheck 0.06 0.09 627×

Disp. Enhan. 0.02 18.58 [N/A]
2D-3D 0.01 0.14 77×

Table 5: CPU vs GPU and speedup for each image resolu-
tion, with the parameters reference combination.

Resolution CPU (s) GPU (ms) Speedup

256x256 1.31 7.56 173×
288x384 1.80 8.28 217×
300x400 6.70 26.59 252×

375x1242 47.44 163.03 291×
820x1142 153.56 500.21 307×

6 Conclusion

The real-time pipeline presented in this paper is a ro-
bust dense stereo estimation method capable of computing
two 3D maps per second, for high-resolution images, and
132 volumes per second, for low resolution images. With
the tests presented in this paper, we have shown how the
pipeline reacts to the alteration of its parameters and how
that affects processing times and the final quality of 3D
maps.

As stated previously in the literature [1], the logN algo-
rithm performs very well for most kinds of scenarios, es-
pecially when dealing with slanted surfaces. We decided to
explore it a bit further and concluded that for a specific com-
bination of parameters, slanted surfaces can be accurately
and robustly reconstructed. Unfortunately this causes tex-
tured zones to be less precise, especially around the discon-
tinuities.

Besides impacting visual results, changing parameters
also impacts processing times. Three parameters are highly
influential: the number of wavelets, the disparity range and
the aggregation window. It is highly important to reach a
compromise between these three variables in order to com-
bine good visual results and real-time processing capabili-
ties.

Despite the reported good performance, the proposed
pipeline still has room to evolve, especially in the aggrega-
tion and post processing stages. Several window-based ag-
gregation schemes can be applied in order to analyze more
deeply the output results in the aggregation section of the
pipeline. Also, a new disparity enhancement algorithm is
needed, one that is parallelizable since memory transfers be-
tween the device and host’s memory must be avoided when-
ever possible.

Acknowledgements This work was supported by the Por-
tuguese Foundation for Science and Technology (FCT), with
FEDER/COMPETE program funding, under Grants AMS-HMI12:
RECI/EEI-AUT/0181/2012, UID/EEA/50008/2013 and also by a
Google Faculty Research Award from Google Inc. This research was
also carried out at the Multimedia Signal Processing Lab, Instituto
de Telecomunicações, an NVIDIA GPU Research Center from the
University of Coimbra, Portugal.

References

1. Michel Antunes and João P Barreto. SymStereo: Stereo Match-
ing using Induced Symmetry. International Journal of Computer
Vision, pages 1–22, 2014.

2. Stan Birchfield and Carlo Tomasi. A Pixel Dissimilarity Measure
That Is Insensitive to Image Sampling. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20:401–406, 1998.

3. Ramin Zabih and John Woodfill. Non-Parametric Local Trans-
forms for Computing Visual Correspondence. In Jan-Olof Ek-
lundh, editor, Computer Vision — ECCV ’94, volume 801 of Lec-
ture Notes in Computer Science, pages 151–158. Springer Berlin
Heidelberg, 1994.

4. NVIDIA Corporation. CUDA Zone. [Online]. Available: https:
//developer.nvidia.com/cuda-zone, 2014.

5. AMD. OpenCL Zone. [Online]. Available: https://developer.
amd.com/tools-and-sdks/opencl-zone/, 2014.

6. K. Hill, S. Craciun, A. George, and H. Lam. Comparative anal-
ysis of opencl vs. hdl with image-processing kernels on stratix-v
fpga. In Application-specific Systems, Architectures and Proces-
sors (ASAP), 2015 IEEE 26th International Conference on, pages
189–193, July 2015.

7. C. Rodriguez-Donate, G. Botella, C. Garcia, E. Cabal-Yepez, and
M. Prieto-Matias. Early experiences with opencl on fpgas: Con-
volution case study. In Field-Programmable Custom Computing
Machines (FCCM), 2015 IEEE 23rd Annual International Sympo-
sium on, pages 235–235, May 2015.

8. Joao Maria, Joao Amaro, Gabriel Falcao, and Luı́s A. Alexandre.
Stacked autoencoders using low-power accelerated architectures
for object recognition in autonomous systems. Neural Processing
Letters, pages 1–14, 2015.

9. Biao Wang, M. Alvarez-Mesa, Chi Ching Chi, and B. Juurlink.
Parallel h.264/avc motion compensation for gpus using opencl.
Circuits and Systems for Video Technology, IEEE Transactions on,
25(3):525–531, March 2015.

10. G. Falcao, V. Silva, L. Sousa, and J. Andrade. Portable LDPC De-
coding on Multicores using OpenCL [Applications Corner]. Sig-
nal Processing Magazine, IEEE, 29(4):81–109, July 2012.

11. Zhengyou Zhang and Ying Shan. A Progressive Scheme for Stereo
Matching. In Marc Pollefeys, Luc Van Gool, Andrew Zisser-
man, and Andrew Fitzgibbon, editors, 3D Structure from Images
— SMILE 2000, volume 2018 of Lecture Notes in Computer Sci-
ence, pages 68–85. Springer Berlin Heidelberg, 2001.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.amd.com/tools-and-sdks/opencl-zone/
https://developer.amd.com/tools-and-sdks/opencl-zone/

18 Ricardo Ralha1 et al.

12. Daniel Scharstein and Richard Szeliski. A Taxonomy and Eval-
uation of Dense Two-Frame Stereo Correspondence Algorithms.
International Journal of Computer Vision, 47(1-3):7–42, 2002.

13. S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A
Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 1, pages 519–528,
June 2006.

14. Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo
Matching using Belief Propagation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 25(7):787–800, July 2003.

15. Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy
Minimization Via Graph Cuts. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 23(11):1222–1239, Nov 2001.

16. V. Kolmogorov and R. Zabih. Computing Visual Correspondence
with Occlusions using Graph Cuts. In Computer Vision, 2001.
ICCV 2001. Proceedings. Eighth IEEE International Conference
on, volume 2, pages 508–515 vol.2, 2001.

17. S. Birchfield and C. Tomasi. Depth Discontinuities by pixel-to-
pixel Stereo. In Computer Vision, 1998. Sixth International Con-
ference on, pages 1073–1080, Jan 1998.

18. P. Anandan. A Computational Framework and an Algorithm for
the Measurement of Visual Motion. International Journal of Com-
puter Vision, 2(3):283–310, 1989.

19. Larry H. Matthies, Richard Szeliski, and Takeo Kanade. Kalman
Filter-based Algorithms for Estimating Depth from Image Se-
quences. Int. J. Computer Vision, 3(3):209–236, September 1989.

20. T. Kanade and M. Okutomi. A stereo matching algorithm with
an adaptive window: theory and experiment. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 16(9):920–932, Sep
1994.

21. Kuk-Jin Yoon and In So Kweon. Adaptive Support-Weight Ap-
proach for Correspondence Search. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(4):650–656, April 2006.

22. Hao Tang and Zhigang Zhu. Content-Based 3-D Mosaics for Rep-
resenting Videos of Dynamic Urban Scenes. Circuits and Systems
for Video Technology, IEEE Transactions on, 22(2):295–308, Feb
2012.

23. Z.Y. Zhu, S. Zhang, S.C. Chan, and H.Y. Shum. Object-Based
Rendering and 3D Reconstruction using a Moveable Image-Based
Rendering System. In Multidimensional (nD) Systems (nDs), 2011
7th International Workshop on, pages 1–4, Sept 2011.

24. R. Ferrari Pinto, A.G.S. Conceicao, P.C.M.A. Farias, and E.T.F.
Santos. A Cost Effective Open-Source Three-Dimensional Re-
construction System and Trajectory Analysis for Mobile Robots.
In Biosignals and Biorobotics Conference (2014): Biosignals and
Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE,
pages 1–5, May 2014.

25. A. Zia, Jie Liang, Jun Zhou, and Yongsheng Gao. 3d reconstruc-
tion from hyperspectral images. In Applications of Computer Vi-
sion (WACV), 2015 IEEE Winter Conference on, pages 318–325,
Jan 2015.

26. S. Yamao, M. Miura, S. Sakai, K. Ito, and T. Aoki. A sequen-
tial online 3d reconstruction system using dense stereo matching.
In Applications of Computer Vision (WACV), 2015 IEEE Winter
Conference on, pages 341–348, Jan 2015.

27. K. Ge, H. Hu, J. Feng, and J. Zhou. Depth estimation using a slid-
ing camera. Image Processing, IEEE Transactions on, 25(2):726–
739, Feb 2016.

28. J. Kowalczuk, E.T. Psota, and L.C. Perez. Real-Time Stereo
Matching on CUDA using an Iterative Refinement Method for
Adaptive Support-Weight Correspondences. Circuits and Systems
for Video Technology, IEEE Transactions on, 23(1):94–104, Jan
2013.

29. Sang Hwa Lee and S. Sharma. Real-Time Disparity Estimation
Algorithm for Stereo Camera Systems. Consumer Electronics,
IEEE Transactions on, 57(3):1018–1026, August 2011.

30. Ke Zhang, Jiangbo Lu, Qiong Yang, G. Lafruit, R. Lauwereins,
and L. Van Gool. Real-Time and Accurate Stereo: A Scalable Ap-
proach with Bitwise Fast Voting on CUDA. Circuits and Systems
for Video Technology, IEEE Transactions on, 21(7):867–878, July
2011.

31. Jinglin Zhang, J.-F. Nezan, M. Pelcat, and J.-G. Cousin. Real-time
gpu-based local stereo matching method. In Design and Architec-
tures for Signal and Image Processing (DASIP), 2013 Conference
on, pages 209–214, Oct 2013.

32. Ailin Yang, Xiuzhi Li, Songmin Jia, and Baoling Qin. Monocu-
lar three dimensional dense surface reconstruction by optical flow
feedback. In Information and Automation, 2015 IEEE Interna-
tional Conference on, pages 504–509, Aug 2015.

33. Qian Long, Qiwei Xie, S. Mita, K. Ishimaru, and N. Shirai. A
real-time dense stereo matching method for critical environment
sensing in autonomous driving. In Intelligent Transportation Sys-
tems (ITSC), 2014 IEEE 17th International Conference on, pages
853–860, Oct 2014.

34. V. Mota, G. Falcao, M. Antunes, J. Barreto, and U. Nunes. Using
the gpu for fast symmetry-based dense stereo matching in high
resolution images. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 7520–
7524, May 2014.

35. R. Ralha, G. Falcao, J. Andrade, M. Antunes, J.P. Barreto, and
U. Nunes. Distributed dense stereo matching for 3d reconstruction
using parallel-based processing advantages. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Con-
ference on, pages 1126–1130, April 2015.

36. R. Szeliski and D. Scharstein. Sampling the Disparity Space Im-
age. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 26(3):419–425, March 2004.

37. Robert T. Collins. A Space-Sweep Approach to True Multi-Image
Matching. In Proceedings of the 1996 Conference on Computer
Vision and Pattern Recognition (CVPR ’96), CVPR ’96, pages
358–, Washington, DC, USA, 1996. IEEE Computer Society.

38. Peter Kovesi. Symmetry and Asymmetry from Local Phase. In
Tenth Australian Joint Conference on Artificial Intelligence, 1997.

39. Peter Kovesi. Image Features from Phase Congruency. Technical
report, Videre: Journal of Computer Vision Research, 1995.

40. NVIDIA Corporation. NVIDIA’s Next Generation CUDA Com-
pute Architecture: Kepler GK110. 2012.

41. NVIDIA Corporation. cuFFT. [Online]. Available: https://

developer.nvidia.com/cuFFT, 2014.
42. Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urta-

sun. Vision meets Robotics: The KITTI Dataset. International
Journal of Robotics Research (IJRR), 2013.

43. Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

44. C. Richardt, D. A. H. Orr, I. P. Davies, A. Criminisi, and N. A.
Dodgson. Real-time Spatiotemporal Stereo Matching using the
Dual-Cross-Bilateral Grid. In European Conference on Computer
Vision (ECCV). Springer Verlag, 2010.

45. Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient
Large-Scale Stereo Matching. In Ron Kimmel, Reinhard Klette,
and Akihiro Sugimoto, editors, Computer Vision – ACCV 2010,
volume 6492 of Lecture Notes in Computer Science, pages 25–38.
Springer Berlin Heidelberg, 2011.

https://developer.nvidia.com/cuFFT
https://developer.nvidia.com/cuFFT

	Introduction
	Related work
	Pipeline for 3D reconstruction
	Parallelizing the pipeline
	Experimental Results
	Conclusion

