

AMS-HMI12: Assisted mobility supported by shared-control and advanced human-machine interfaces

RECI/EEI-AUT/0181/2012
Partners: ISR-UC (Principal Contractor), UC, APCC, IPT
Period: 1/1/2013 -31/12/2015

Technical Report

Fast Parallel SymStereo and Uncapacitated Facility
Location Kernels applied to Piecewise Planar 3D
reconstruction using hybrid CPU/GPU and multi-GPU
architectures

Authors: Carlos Graça
Supervisors: Gabriel Falcão, Urbano Nunes

Abstract: This work consists in benchmarking and accelerating 3D Piecewise Planar
Reconstruction (PPR) [1], using hybrid CPU + GPU and multi-GPU parallel computational
models and architectures. 3D reconstruction algorithms are composed by distinct time
computing expensive tasks, thus we selected the two computationally most intensive ones
to parallelize: SymStereo (Stereo Matching using Induced Symmetry) and
Uncapacitated Facility Location (UFL). Experimental results show that the accelerated
SymStereo algorithm running on multi-GPU systems is on average 39 times faster than
the original CPU version and is able to process 29 frames per second. In UFL calculations,
the proposed multi-GPU system is on average 35 times faster than the original CPU
approach.

Coimbra, December 15th 2015

Project AMS-HMI12 – Progress Report Page 1 of 15

I. INTRODUCTION

This task consists in accelerating a pipeline for 3D stereo reconstruction that combines the
benefits of Piecewise-Planar Reconstruction (PPR) and plane-based odometry by
recovering both structure and motion from plane-primitives [1]. The algorithm receives as
input an image sequence acquired by a calibrated stereo rig and outputs 3D planes in the
scene and the camera motion. Current stereo methods still face difficulties in handling
situations of:

 Weak or repetitive texture;

 Variable illumination;

 High surface slant.

PPR methods are employed to overcome these issues. This new method is based on
planes detection, thus, unlike the 3D Reconstruction methods based on clouds of points,
we describe a 3D model using much less information. As an example, we take a facade of
a building as a plane, which can be represented simply by using three XYZ-coordinates. If
instead we use clouds of points, we would have millions of points to describe the same
facade and three XYZ-coordinate values per single point. With this, not only we can
reduce the intensive processing workload, as we are also capable of reducing bandwidth
requirements for accessing the data volume (e.g. if we wish to disseminate the 3D model
through the Internet).
Also, estimating the motion from plane correspondences is advantageous since plane
features are much less numerous than point features. Man-made environments are often
dominated by large size planes, leading to:

 Fast correspondence and scalability;

 Correspondence across wide baseline images;

 Resilience to dynamic foreground.

In this work, we develop a full C++ version of planes detection and optimization algorithm
used in PPR. With this C++ code, we test and benchmark all functions in order to identify
the most time-expensive or relevant task, thus selecting to parallelization these
candidates: SymStereo and UFL. This parallelization was developed using CPU + single-
GPU and multi-GPU architectures under CUDA 7.5 framework [2].

A. Related Work

Other works can build 3D models using a batch of images acquired by a monocular
camera using PPR methods [4, 5, 6]. These methods use all images in simultaneous to
compute the model. Alternatively, our new PPR method [1] can create a 3D model from a
sequence of stereo images using a sliding window approach to concatenate the
contributions of consecutive stereo pairs.
In the last few years, GPU parallel processing techniques have been applied to diverse
areas of image processing and computer vision, as for example: graph cuts, canny edge
detection or stereo matching [7, 8, 9, 10]. Regarding the specific topic of GPU computing
and 3D reconstruction we can find some interesting works [11, 12, 13].

Project AMS-HMI12 – Progress Report Page 2 of 15

B. Contribution/Development

The main contributions of this work can be summarized as:

 Single- and multi-GPU parallel solutions that calculate symmetry-based sparse
stereo matching (the logN variant of the SymStereo algorithm);

 A fast message-passing algorithm (max-sum) for solving the Uncapacitated Facility
Location (UFL) under single- and multi-GPU assemblies.

II. BACKGROUND MATERIAL

A. Algorithm description

Below, are shown parts of the algorithm that illustrate the operational basis of the 3D
reconstruction algorithm.

Input: Single stereo pair

Figure 1: Input stereo pair (left and right images)

Intermediate output:

Figure 2: Example of SymStereo energies

Project AMS-HMI12 – Progress Report Page 3 of 15

Figure 3: Example of Hough transform to detect lines in energies obtained through

SymStereo

Figure 4: MRF optimization: applied to energy results from SymStereo and Hough lines

detected. This step selects the line segments that are better candidates to define each

virtual cut plane.

In Figures 1 and 2 we observe the input images (stereo pair images) and SymStereo
energies output [1, 3]. To these energies we apply a Hough Transform (depicted in Fig. 3)
with a Markov Random Field (MRF) optimization in order to obtain the best line segment
candidates to define each virtual cut plane (please see Fig. 4). By applying 3D
reconstruction of these line segments and then each set of two lines provides a plane
hypothesis. Finally, all plane hypotheses are optimized in order to select the best options
has made using UFL algorithm [1] obtaining:

 Final planes that represent the scene (Fig.5).

 Final 3D model (Fig. 6 and 7)

Figure 5: Planes detection result

Figure 6: 3D Final Model

Project AMS-HMI12 – Progress Report Page 4 of 15

Figure 7: 3D Models obtained using single stereo pair

Input: Stereo pair sequence

By applying the full algorithm for 3D reconstruction in a stereo sequence we obtain the

final 3D model as depicted in Fig. 9 (Fig. 8 shows the left image from the input sequence).

Figure 8: Input stereo sequence (only left image)

Figure 9: Final 3D model (generated from the input sequence)

Project AMS-HMI12 – Progress Report Page 5 of 15

B. GPU Computing

Recently, the common desktop Central Processing Units (CPUs) started incorporating a

few cores (typically 4 / 8 cores) mostly optimized for sequential execution, while Graphics

Processing Units (GPUs) represent massively parallel architectures including thousands of

smaller processing units (or cores) and very high-memory bandwidths (Fig. 10).

Figure 10: CUDA application schema: Workload distribution between GPU and CPU

These GPU architectures are becoming increasingly efficient for dealing with compute-

intensive workloads, offering high speedups when compared to CPUs. With this, it is

possible to process several pixels of an image concurrently. To overcome the main

obstacle regarding the developments of parallel programs on GPUs, the CUDA

programming interface and framework disseminated worldwide a new parallel

programming style based on extensions to the C language which is accessible to a

broader community of programmers and new application models.

When performing GPU computing, firstly we need to transfer data to be processed

to the GPU memory, launch parallel execution kernels on the device and then collect

results from the GPU back to the CPU again. All these steps are orchestrated by the CPU

(also called host) (see Fig. 11).

Project AMS-HMI12 – Progress Report Page 6 of 15

Figure 11: Simple CUDA workflow illustration

III. METHOD / NEW DEVELOPMENT

MULTI-GPU SCHEMA

By exploiting the use of GPUs, we develop C/C++ code that runs in parallel inside the

GPU card. Also, propose multi-GPU systems that besides the internal parallelism of the

GPU, exploit the simultaneous execution of distinct GPUs in simultaneous (Fig. 12).

Figure 12: Multi-GPU system orchestrated by a master CPU (thread 0 in the figure)

The second approach raises the degree of parallelism that these machines are capable to

offer. In Fig. 12 we can observe a host thread reading input data, which is stored in the

shared memory zone. Shared memory can be seen by other threads and accessed

concurrently. Thus, creating one host thread per GPU we are able to run the same parallel

code in several GPUs.

Project AMS-HMI12 – Progress Report Page 7 of 15

IV. EXPERIMENTAL/SIMULATION SETUP

Below, we show the external software and hardware setup used. Table 1 shows the

processing platform used to run the planes detection pipeline on CPU, while Table 2 and 3

show the GPUs used for single- and multi-GPU configurations.

CPU Versions (Under Intel Core i7-4790k)

MATLAB (R2013b)

Sequential C (g++ v4.4.7)

Table 1: CPU Platforms

Single-GPU Setup

NVIDIA GTX680

NVIDIA Tesla K40c

NVIDIA GTX TITAN

NVIDIA GTX TITAN X

Table 2: GPU Hardware for single-GPU

Multi-GPU Setup

GTX680 / Tesla K40c

Tesla K40c / GTX TITAN

Tesla K40c / GTX TITAN X

GTX TITAN / GTX TITAN X

Tesla K40c / GTX TITAN / GTX TITAN X

Table 3: GPU Hardware for multi-GPU

Software Requirements:

 MATLAB R2013b

 OpenCV 2.4.11

 GCO Library v3.0

 Vlfeat v0.9.16

 LSD v1.6 (Line Segment Detector)

 CUDA Framework 7.5

Code Compilers:

 g++ v4.4.7

 gcc v4.4.7

 nvcc v7.5.17

Project AMS-HMI12 – Progress Report Page 8 of 15

V. EXPERIMENTAL/SIMULATION RESULTS AND DISCUSSION

Naturally, it wouldn't be fair comparing execution times using MATLAB on the CPU against
parallel kernels running CUDA on the GPU. Therefore, it was initially constructed a new
version of planes detection algorithm coded in C/C++ to use in this 3D reconstruction
pipeline (see Table 4). This sequential C version helps to identify the time-expensive tasks
(Table 5).

A. Planes detection running on CPU

Processing Platform under Intel Core i7-4790k Execution time (ms)

MATLAB 82697

C Sequential 42722

Table 4: Time comparison between MATLAB and C sequential code

Function under C code running on Intel Core i7-4790k Executions Time (ms)

Uncapacitated Facility Location (Message Passing) 31890

Hough Transform 5575

Graph Cut Optimization 2611

SymStereo (logN) 1365

Time SUM 41441 (97%)

Table 5: Execution times for different tasks running under CPU

According to the information presented in Table 5, we choose the UFL algorithm to be

parallelized because it represents the more expensive task. The second choice was

SymStereo, which is a new and very promising algorithm that can add real value to

computer vision applications if running in real-time.

B. Parallel SymStereo

In Tables 6 and 7, we depict SymStereo execution times, frames per second (FPS) and

speedups obtained for single- and multi-GPU implementations with default configuration

(35 virtual cut planes and images of size 1024x768 pixels). With the fastest single-GPU

assembly we are able to compute SymStereo with a throughput of 11 FPS and a speedup

associated that represents a gain of 16 times when compared to the CPU approach. In the

fastest multi-GPU assembly we achieve 29 FPS, running 39 times faster than the CPU

implementation.

Processing Platform Executions Time (ms) FPS Speedup

Intel Core i7-4790k 1365 0.73 N/A

Nvidia GTX680 146.49 6.83 9.20x

Nvidia Tesla K40c 116.5 8.58 11.88x

Nvidia GTX TITAN 104.1 9.61 13.07x

Nvidia GTX TITAN X 83.58 11.96 16.68x

Table 6: SymStereo execution times running on single-GPU comparing against a CPU

Intel Core i7-4790k

Project AMS-HMI12 – Progress Report Page 9 of 15

Processing Platform Executions Time (ms) FPS Speedup

GTX680 / Tesla K40c 62.95 15.89 21.68x

Tesla K40c / GTX TITAN 52.07 19.21 26.22x

Tesla K40c / GTX TITAN X 47.03 21.26 29.02x

GTX TITAN / GTX TITAN X 45.69 21.89 29.88x

Tesla K40c / GTX TITAN / GTX TITAN X 34.34 29.12 39.75x

Table 7: SymStereo execution times running on multi-GPU comparing against a CPU Intel

Core i7-4790k

Figure 13: Multi-GPU processing times: workload distribution between GPUs

(SymStereo algorithm running in a multi-GPU assembly without significant idle times)

In Fig. 13 we show how multi-GPU system works; each GPU reads a stereo pair of images

from host shared memory zone (H2D), processes images (SymStereo kernel execution)

and collects the results back to the CPU (D2H).

C. Parallel Uncapacitated Facility Location

Through Tables 8 and 9 we show UFL execution times and speedups obtained for single-

and multi-GPU implementations with a default configuration (UFL Input Matrix size:

26880x407 and maximum number of iterations = 300). With the fastest single-GPU

assembly we are able to compute UFL with a speedup associated 15 times faster than

CPU implementation and 35 times faster in the best multi-GPU configuration.

Processing Platform Executions Time (ms) Speedup

Intel Core i7-4790k 31890 N/A

Nvidia GTX680 4742 6.73x

Nvidia Tesla K40c 3269 9.76x

Nvidia GTX TITAN 2882 11.06x

Nvidia GTX TITAN X 2001 15.94x

Table 8: UFL execution times and speedup running on single-GPU comparing against a

CPU Intel Core i7-4790k

Project AMS-HMI12 – Progress Report Page 10 of 15

Processing Platform Executions Time (ms) Speedup

GTX680 / Tesla K40c 1945.52 16.39x

Tesla K40c / GTX TITAN 1562.99 20.40x

Tesla K40c / GTX TITAN X 1261.21 25.29x

GTX TITAN / GTX TITAN X 1245.63 25.60x

Tesla K40c / GTX TITAN / GTX TITAN X 908.91 35.09x

Table 9: UFL execution times and speedup running on multi-GPU comparing against a

CPU Intel Core i7-4790k

In Fig. 14 for each UFL procedure the GPU reads an input matrix from host shared

memory zone (H2D), processes the data (UFL kernel execution) and collects the results

back to the CPU (D2H).

Figure 14: Multi-GPU execution profile: workload distribution between GPUs (UFL

algorithm running in a multi-GPU assembly without significant idle times)

VI. WORK IN PROGRESS / FUTURE WORK

A. Work in Progress

For the continuous evolution of this research project we need to acquire a large set of

new samples of pairs of stereo images that hopefully will allow us to capture the

essence of new constraints and test the robustness of the proposed fast 3D

reconstruction algorithms. A new dataset of high definition stereo images (3000 x 2200

pixels) has been captured by 2x GoPro HERO 4 in urban areas of Helsinki, Finland,

from the top of the buildings. Our plan consists of following an approach that allows the

capture of large data collections without (or with minimal) human intervention. For the

current approach we plan to use a drone flying over the city with a camera setup

Project AMS-HMI12 – Progress Report Page 11 of 15

mounted as shown in Fig. 15 and later on automatically applying the eventual radial

distortion correction (see Fig. 16).

Figure 15: Camera setup to mount in drone

Figure 16: New stereo dataset from urban areas of Helsinki, using a drone to capture

stereo images. First row represents calibration images and second row the captured

Project AMS-HMI12 – Progress Report Page 12 of 15

images

B. Future Work

 A larger dataset can be captured with some closed loops to test the algorithm

efficiency and continuing the optimization and prototyping of this new PPR method;

 Parallel implementations of SymStereo and UFL algorithms can be integrated into

new OpenCV libraries combining CPU and single-GPU implementations,

advancing the state-of-the-art in the sense that these new and faster widely used

algorithms can be made accessible to the computer vision community;

 Parallelizing the full 3D reconstruction pipeline including the functions identified in

this work: Hough transform and graph cut optimization.

VII. CONCLUSION

We develop a parallel framework for SymStereo and UFL computation, which can be
helpful in the context of the current project and also in many other computer vision
applications. These parallel implementations are carried out by exploiting single- and multi-
GPU assemblies, thus providing a significant throughput performance improvement. This
novel approach allows processing multiple pixels of an image or matrix entries
concurrently, and multi-GPU assemblies in particular allow processing more than one
image/matrix at the same time in distinct GPU devices, thus sustaining the obtained
throughput levels. By using our best single-GPU implementation (NVIDIA GTX TITAN X),
we are able to perform SymStereo computations with a throughput of 11 FPS, obtaining an
average speedup of 16.68 times compared to an Intel Core i7-4790k. Regarding multi-
GPU architectures, the best configuration from our workstations (Tesla K40c / GTX TITAN
/ GTX TITAN X) can process 29 FPS with an average speedup of 39.75 compared to the
same Intel Core i7-4790k. In UFL acceleration, the fastest single-GPU system can process
each matrix with an average speedup of 15.94 times compared to its sequential CPU
version. The best multi-GPU configuration tested achieves an average speedup of 35.09
times for the same comparison conditions. With the obtained throughputs we are able to
reduce significantly the execution time for entire 3D reconstruction procedure.

REFERENCES

[1] C. Raposo, M. Antunes, and J. P. Barreto, “Piecewise-Planar StereoScan: Structure

and Motion from Plane Primitives”, European Conf. on Computer Vision (ECCV’14), 2014.

[2] Podlozhnyuk, V., Harris, M., Young, E.: “NVIDIA CUDA C programming guide”. NVIDIA
Corporation (2012).

[3] Michel Antunes and J. P. Barreto, “SymStereo: Stereo Matching using Induced

Symmetry”, International Journal of Computer Vision, pp. 1–21, Sep. 2014.

Project AMS-HMI12 – Progress Report Page 13 of 15

[4] Sinha, S., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering.

In: Computer Vision, 2009 IEEE 12th International Conference on. pp.1881-1888

[5] Gallup, D., Frahm, J.M., Pollefeys, M.: Piecewise planar and non-planar stereo for

urban scene reconstruction. In: Computer Vision and Pattern Recognition(CVPR), 2010

IEEE Conference on. pp. 1418-1425

[6] Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo

collections. In: International J. Computer Vision 80(2), 189-210 (Nov 2008),

http://dx.doi.org/10.1007/s11263-007-0107-3

[7] Vineet, V.; Narayanan, P.J., "CUDA cuts: Fast graph cuts on the GPU," in Computer

Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society

Conference on , vol., no., pp.1-8, 23-28 June 2008 doi: 10.1109/CVPRW.2008.4563095

[8] Yuancheng Luo; Duraiswami, R., "Canny edge detection on NVIDIA CUDA,"

in Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE

Computer Society Conference on , vol., no., pp.1-8, 23-28 June 2008 doi:

10.1109/CVPRW.2008.4563088

[9] Xing Mei; Xun Sun; Mingcai Zhou; shaohui Jiao; Haitao Wang; Xiaopeng Zhang, "On

building an accurate stereo matching system on graphics hardware," in Computer Vision

Workshops (ICCV Workshops), 2011 IEEE International Conference on , vol., no., pp.467-

474, 6-13 Nov. 2011 doi: 10.1109/ICCVW.2011.6130280

[10] Zhiyi Yang; Yating Zhu; Yong Pu, "Parallel Image Processing Based on CUDA,"

in Computer Science and Software Engineering, 2008 International Conference on , vol.3,

no., pp.198-201, 12-14 Dec. 2008 doi: 10.1109/CSSE.2008.1448

[11] Izadi, Shahram, et al. "KinectFusion: real-time 3D reconstruction and interaction using

a moving depth camera." Proceedings of the 24th annual ACM symposium on User

interface software and technology. ACM, 2011.

[12] Pollefeys, Marc, et al. "Detailed real-time urban 3d reconstruction from

video."International Journal of Computer Vision 78.2-3 (2008): 143-167.

[13] Ladikos, A.; Benhimane, Selim; Navab, N., "Efficient visual hull computation for real-

time 3D reconstruction using CUDA," in Computer Vision and Pattern Recognition

Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on , vol., no., pp.1-8,

23-28 June 2008 doi: 10.1109/CVPRW.2008.4563098

http://dx.doi.org/10.1007/s11263-007-0107-3

