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Abstract: This work consists in benchmarking and accelerating 3D Piecewise Planar 
Reconstruction (PPR) [1], using hybrid CPU + GPU and multi-GPU parallel computational 
models and architectures. 3D reconstruction algorithms are composed by distinct time 
computing expensive tasks, thus we selected the two computationally most intensive ones 
to parallelize: SymStereo (Stereo Matching using Induced Symmetry) and 
Uncapacitated Facility Location (UFL). Experimental results show that the accelerated 
SymStereo algorithm running on multi-GPU systems is on average 39 times faster than 
the original CPU version and is able to process 29 frames per second. In UFL calculations, 
the proposed multi-GPU system is on average 35 times faster than the original CPU 
approach.   
 
 
 
 
 
 
Coimbra, December 15th 2015 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Project AMS-HMI12 – Progress Report Page 1 of 15 

 

I. INTRODUCTION 

 

This task consists in accelerating a pipeline for 3D stereo reconstruction that combines the 
benefits of Piecewise-Planar Reconstruction (PPR) and plane-based odometry by 
recovering both structure and motion from plane-primitives [1]. The algorithm receives as 
input an image sequence acquired by a calibrated stereo rig and outputs 3D planes in the 
scene and the camera motion. Current stereo methods still face difficulties in handling 
situations of: 
 

 Weak or repetitive texture; 

 Variable illumination; 

 High surface slant. 
 
PPR methods are employed to overcome these issues. This new method is based on 
planes detection, thus, unlike the 3D Reconstruction methods based on clouds of points, 
we describe a 3D model using much less information. As an example, we take a facade of 
a building as a plane, which can be represented simply by using three XYZ-coordinates. If 
instead we use clouds of points, we would have millions of points to describe the same 
facade and three XYZ-coordinate values per single point. With this, not only we can 
reduce the intensive processing workload, as we are also capable of reducing bandwidth 
requirements for accessing the data volume (e.g. if we wish to disseminate the 3D model 
through the Internet). 
Also, estimating the motion from plane correspondences is advantageous since plane 
features are much less numerous than point features. Man-made environments are often 
dominated by large size planes, leading to: 
 

 Fast correspondence and scalability; 

 Correspondence across wide baseline images; 

 Resilience to dynamic foreground. 
 
In this work, we develop a full C++ version of planes detection and optimization algorithm 
used in PPR. With this C++ code, we test and benchmark all functions in order to identify 
the most time-expensive or relevant task, thus selecting to parallelization these 
candidates: SymStereo and UFL. This parallelization was developed using CPU + single-
GPU and multi-GPU architectures under CUDA 7.5 framework [2]. 
 
 
A. Related Work  
 
Other works can build 3D models using a batch of images acquired by a monocular 
camera using PPR methods [4, 5, 6]. These methods use all images in simultaneous to 
compute the model. Alternatively, our new PPR method [1] can create a 3D model from a 
sequence of stereo images using a sliding window approach to concatenate the 
contributions of consecutive stereo pairs. 
In the last few years, GPU parallel processing techniques have been applied to diverse 
areas of image processing and computer vision, as for example: graph cuts, canny edge 
detection or stereo matching [7, 8, 9, 10]. Regarding the specific topic of GPU computing 
and 3D reconstruction we can find some interesting works [11, 12, 13].  
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B. Contribution/Development 
 
The main contributions of this work can be summarized as: 
 

 Single- and multi-GPU parallel solutions that calculate symmetry-based sparse 
stereo matching (the logN variant of the SymStereo algorithm); 

 A fast message-passing algorithm (max-sum) for solving the Uncapacitated Facility 
Location (UFL) under single- and multi-GPU assemblies. 

 
 

II. BACKGROUND MATERIAL 
 
A. Algorithm description 
 
Below, are shown parts of the algorithm that illustrate the operational basis of the 3D 
reconstruction algorithm.  
 
 
Input: Single stereo pair 

 

Figure 1: Input stereo pair (left and right images) 

 

Intermediate output: 

 

Figure 2: Example of SymStereo energies 
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Figure 3: Example of Hough transform to detect lines in energies obtained through 

SymStereo 

 

Figure 4: MRF optimization: applied to energy results from SymStereo and Hough lines 

detected. This step selects the line segments that are better candidates to define each 

virtual cut plane. 

In Figures 1 and 2 we observe the input images (stereo pair images) and SymStereo 
energies output [1, 3]. To these energies we apply a Hough Transform (depicted in Fig. 3) 
with a Markov Random Field (MRF) optimization in order to obtain the best line segment 
candidates to define each virtual cut plane (please see Fig. 4). By applying 3D 
reconstruction of these line segments and then each set of two lines provides a plane 
hypothesis. Finally, all plane hypotheses are optimized in order to select the best options 
has made using UFL algorithm [1] obtaining: 
 

 Final planes that represent the scene (Fig.5). 

 Final 3D model (Fig. 6 and 7) 
 

 
Figure 5: Planes detection result 

 
Figure 6: 3D Final Model 
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Figure 7: 3D Models obtained using single stereo pair 

 

Input: Stereo pair sequence 

By applying the full algorithm for 3D reconstruction in a stereo sequence we obtain the 

final 3D model as depicted in Fig. 9 (Fig. 8 shows the left image from the input sequence). 

 

Figure 8: Input stereo sequence (only left image) 

 

Figure 9: Final 3D model (generated from the input sequence) 
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B.  GPU Computing 
 
Recently, the common desktop Central Processing Units (CPUs) started incorporating a 

few cores (typically 4 / 8 cores) mostly optimized for sequential execution, while Graphics 

Processing Units (GPUs) represent massively parallel architectures including thousands of 

smaller processing units (or cores) and very high-memory bandwidths (Fig. 10).  

 

 

Figure 10: CUDA application schema: Workload distribution between GPU and CPU 

 

These GPU architectures are becoming increasingly efficient for dealing with compute-

intensive workloads, offering high speedups when compared to CPUs. With this, it is 

possible to process several pixels of an image concurrently. To overcome the main 

obstacle regarding the developments of parallel programs on GPUs, the CUDA 

programming interface and framework disseminated worldwide a new parallel 

programming style based on extensions to the C language which is accessible to a 

broader community of programmers and new application models. 

When performing GPU computing, firstly we need to transfer data to be processed 

to the GPU memory, launch parallel execution kernels on the device and then collect 

results from the GPU back to the CPU again. All these steps are orchestrated by the CPU 

(also called host) (see Fig. 11). 
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Figure 11: Simple CUDA workflow illustration 

 
 
III. METHOD / NEW DEVELOPMENT 
 
MULTI-GPU SCHEMA  
 
By exploiting the use of GPUs, we develop C/C++ code that runs in parallel inside the 

GPU card. Also, propose multi-GPU systems that besides the internal parallelism of the 

GPU, exploit the simultaneous execution of distinct GPUs in simultaneous (Fig. 12).  

 

 

Figure 12: Multi-GPU system orchestrated by a master CPU (thread 0 in the figure) 

 

The second approach raises the degree of parallelism that these machines are capable to 

offer. In Fig. 12 we can observe a host thread reading input data, which is stored in the 

shared memory zone. Shared memory can be seen by other threads and accessed 

concurrently. Thus, creating one host thread per GPU we are able to run the same parallel 

code in several GPUs. 
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IV. EXPERIMENTAL/SIMULATION SETUP 
 
Below, we show the external software and hardware setup used. Table 1 shows the 

processing platform used to run the planes detection pipeline on CPU, while Table 2 and 3 

show the GPUs used for single- and multi-GPU configurations. 

 

CPU Versions (Under Intel Core i7-4790k) 

MATLAB (R2013b) 

Sequential C (g++ v4.4.7) 

Table 1: CPU Platforms 
 
 

Single-GPU Setup 

NVIDIA GTX680 

NVIDIA Tesla K40c 

NVIDIA GTX TITAN 

NVIDIA GTX TITAN X 

Table 2: GPU Hardware for single-GPU 
 
 

Multi-GPU Setup 

GTX680 / Tesla K40c 

Tesla K40c / GTX TITAN 

Tesla K40c / GTX TITAN X 

GTX TITAN / GTX TITAN X 

Tesla K40c / GTX TITAN / GTX TITAN X 

Table 3: GPU Hardware for multi-GPU 
 

 
Software Requirements: 

  

 MATLAB R2013b 

 OpenCV 2.4.11 

 GCO Library v3.0 

 Vlfeat v0.9.16 

 LSD v1.6 (Line Segment Detector) 

 CUDA Framework 7.5 
 

 
Code Compilers: 
  

 g++ v4.4.7 

 gcc v4.4.7 

 nvcc v7.5.17 
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V. EXPERIMENTAL/SIMULATION RESULTS AND DISCUSSION 
 
Naturally, it wouldn't be fair comparing execution times using MATLAB on the CPU against 
parallel kernels running CUDA on the GPU. Therefore, it was initially constructed a new 
version of planes detection algorithm coded in C/C++ to use in this 3D reconstruction 
pipeline (see Table 4). This sequential C version helps to identify the time-expensive tasks 
(Table 5).  
 
A. Planes detection running on CPU 

 
 

Processing Platform under Intel Core i7-4790k Execution time (ms) 

MATLAB 82697 

C Sequential 42722 

Table 4: Time comparison between MATLAB and C sequential code 

Function under C code running on Intel Core i7-4790k Executions Time (ms) 

Uncapacitated Facility Location (Message Passing) 31890 

Hough Transform 5575 

Graph Cut Optimization 2611 

SymStereo (logN) 1365 

Time SUM 41441 (97%) 

Table 5: Execution times for different tasks running under CPU 

 

According to the information presented in Table 5, we choose the UFL algorithm to be 

parallelized because it represents the more expensive task. The second choice was 

SymStereo, which is a new and very promising algorithm that can add real value to 

computer vision applications if running in real-time. 

B. Parallel SymStereo 
 

In Tables 6 and 7, we depict SymStereo execution times, frames per second (FPS) and 

speedups obtained for single- and multi-GPU implementations with default configuration 

(35 virtual cut planes and images of size 1024x768 pixels). With the fastest single-GPU 

assembly we are able to compute SymStereo with a throughput of 11 FPS and a speedup 

associated that represents a gain of 16 times when compared to the CPU approach. In the 

fastest multi-GPU assembly we achieve 29 FPS, running 39 times faster than the CPU 

implementation.  

Processing Platform Executions Time (ms) FPS Speedup 

Intel Core i7-4790k 1365 0.73 N/A 

Nvidia GTX680 146.49 6.83 9.20x 

Nvidia Tesla K40c 116.5 8.58 11.88x 

Nvidia GTX TITAN 104.1 9.61 13.07x 

Nvidia GTX TITAN X 83.58 11.96 16.68x 

Table 6: SymStereo execution times running on single-GPU comparing against a CPU 

Intel Core i7-4790k 
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Processing Platform Executions Time (ms) FPS Speedup 

GTX680 / Tesla K40c 62.95 15.89 21.68x 

Tesla K40c / GTX TITAN 52.07 19.21 26.22x 

Tesla K40c / GTX TITAN X 47.03 21.26 29.02x 

GTX TITAN / GTX TITAN X 45.69 21.89 29.88x 

Tesla K40c / GTX TITAN / GTX TITAN X 34.34 29.12 39.75x 

Table 7: SymStereo execution times running on multi-GPU comparing against a CPU Intel 

Core i7-4790k 

 

Figure 13: Multi-GPU processing times: workload distribution between GPUs 

(SymStereo algorithm running in a multi-GPU assembly without significant idle times) 

 

In Fig. 13 we show how multi-GPU system works; each GPU reads a stereo pair of images 

from host shared memory zone (H2D), processes images (SymStereo kernel execution) 

and collects the results back to the CPU (D2H). 

 

C. Parallel Uncapacitated Facility Location 
 

Through Tables 8 and 9 we show UFL execution times and speedups obtained for single- 

and multi-GPU implementations with a default configuration (UFL Input Matrix size: 

26880x407 and maximum number of iterations = 300). With the fastest single-GPU 

assembly we are able to compute UFL with a speedup associated 15 times faster than 

CPU implementation and 35 times faster in the best multi-GPU configuration. 

Processing Platform Executions Time (ms) Speedup 

Intel Core i7-4790k 31890 N/A 

Nvidia GTX680 4742 6.73x 

Nvidia Tesla K40c 3269 9.76x 

Nvidia GTX TITAN 2882 11.06x 

Nvidia GTX TITAN X 2001 15.94x 

Table 8: UFL execution times and speedup running on single-GPU comparing against a 

CPU Intel Core i7-4790k 
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Processing Platform Executions Time (ms) Speedup 

GTX680 / Tesla K40c 1945.52 16.39x 

Tesla K40c / GTX TITAN 1562.99 20.40x 

Tesla K40c / GTX TITAN X 1261.21 25.29x 

GTX TITAN / GTX TITAN X 1245.63 25.60x 

Tesla K40c / GTX TITAN / GTX TITAN X 908.91 35.09x 

Table 9: UFL execution times and speedup running on multi-GPU comparing against a 

CPU Intel Core i7-4790k 

 

In Fig. 14 for each UFL procedure the GPU reads an input matrix from host shared 

memory zone (H2D), processes the data (UFL kernel execution) and collects the results 

back to the CPU (D2H). 

 

 
Figure 14: Multi-GPU execution profile: workload distribution between GPUs (UFL 

algorithm running in a multi-GPU assembly without significant idle times) 

 
 
 
 
VI. WORK IN PROGRESS / FUTURE WORK  
 
A. Work in Progress 
 

For the continuous evolution of this research project we need to acquire a large set of 

new samples of pairs of stereo images that hopefully will allow us to capture the 

essence of new constraints and test the robustness of the proposed fast 3D 

reconstruction algorithms. A new dataset of high definition stereo images (3000 x 2200 

pixels) has been captured by 2x GoPro HERO 4 in urban areas of Helsinki, Finland, 

from the top of the buildings. Our plan consists of following an approach that allows the 

capture of large data collections without (or with minimal) human intervention. For the 

current approach we plan to use a drone flying over the city with a camera setup 
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mounted as shown in Fig. 15 and later on automatically applying the eventual radial 

distortion correction (see Fig. 16). 

 

 
Figure 15: Camera setup to mount in drone 

 

 
 

 

  
Figure 16: New stereo dataset from urban areas of Helsinki, using a drone to capture 

stereo images. First row represents calibration images and second row the captured 
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images 

B. Future Work 

 

 A larger dataset can be captured with some closed loops to test the algorithm 

efficiency and continuing the optimization and prototyping of this new PPR method; 

 

 Parallel implementations of SymStereo and UFL algorithms can be integrated into 

new OpenCV libraries combining CPU and single-GPU implementations, 

advancing the state-of-the-art in the sense that these new and faster widely used 

algorithms can be made accessible to the computer vision community; 

 

 Parallelizing the full 3D reconstruction pipeline including the functions identified in 

this work: Hough transform and graph cut optimization. 

 

VII. CONCLUSION 
 
We develop a parallel framework for SymStereo and UFL computation, which can be 
helpful in the context of the current project and also in many other computer vision 
applications. These parallel implementations are carried out by exploiting single- and multi-
GPU assemblies, thus providing a significant throughput performance improvement. This 
novel approach allows processing multiple pixels of an image or matrix entries 
concurrently, and multi-GPU assemblies in particular allow processing more than one 
image/matrix at the same time in distinct GPU devices, thus sustaining the obtained 
throughput levels. By using our best single-GPU implementation (NVIDIA GTX TITAN X), 
we are able to perform SymStereo computations with a throughput of 11 FPS, obtaining an 
average speedup of 16.68 times compared to an Intel Core i7-4790k. Regarding multi-
GPU architectures, the best configuration from our workstations (Tesla K40c / GTX TITAN 
/ GTX TITAN X) can process 29 FPS with an average speedup of 39.75 compared to the 
same Intel Core i7-4790k. In UFL acceleration, the fastest single-GPU system can process 
each matrix with an average speedup of 15.94 times compared to its sequential CPU 
version. The best multi-GPU configuration tested achieves an average speedup of 35.09 
times for the same comparison conditions. With the obtained throughputs we are able to 
reduce significantly the execution time for entire 3D reconstruction procedure. 
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