
DISTRIBUTED DENSE STEREO MATCHING FOR 3D RECONSTRUCTION USING
PARALLEL-BASED PROCESSING ADVANTAGES

R. Ralha? G. Falcao∗? J. Andrade? M. Antunes‡ J. P. Barreto† U. Nunes†

? Instituto de Telecomunicações, Dept. of Electr. & Computer Eng., University of Coimbra, Portugal
‡Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
†Institute of Systems and Robotics, Dept. of Electr. & Computer Eng., University of Coimbra, Portugal

ABSTRACT
Instead of measuring photo-similarity, SymStereo is a stereo
vision algorithm that uses new cost functions to measure
symmetry differences between pairs of images. In this pa-
per we propose the acceleration of a complete signal pro-
cessing pipeline for generating 3D volumes based on dense
SymStereo. The outputs here generated achieve superior
reconstruction quality namely for slant based scenarios, so
typical in autonomous systems, that have to capture pairs
of images and perform moving decisions in real-time. In
particular, we analyse several parallelization strategies for
the compute-intensive aggregation procedure using different
parameters and evaluate a trade-off between processing time,
and higher precision of the calculated depths and quality of
the final reconstructed 3D volume. The developed parallel
pipeline allows to process more than 4.5 volumes per second
for high resolution images using commodity GPUs, which
conveniently suits its application in a variety of robotics
systems.

Index Terms— Stereo estimation, SymStereo, Parallel
processing, 3D Reconstruction, High resolution images

1. INTRODUCTION

Recently, a new algorithm that uses photo-symmetry instead
of photo-similarity-based cost functions has been proposed
by Antunes et al. [1, 2]. This new pipeline for calculating dis-
parity maps, baptised SymStereo, and in particular its variant
logN shows superior performance in recovering the scene’s
depth for pairs of images with slant (please see the log20
variant in Fig.18 from [2]). This particularity of the algo-
rithm encourages the development of new methods for ex-
tracting higher quality from the generated disparity map and
3D volume, which is a fundamental procedure in autonomous
systems, namely vehicles and robots, that constantly have to
perform analysis of images with slant for making decisions,
namely regarding trajectory, preferably in real-time.

This paper investigates the manipulation of the sensitive
aggregation phase in the SymStereo processing pipeline [3],

∗This work was funded by a Google Research Award from Google Inc.

namely the algorithmic gains achievable with its paralleliza-
tion and the corresponding room they create for increasing
the complexity of the aggregation procedure that may pro-
duce better 3D images. The main contributions of this paper
can be summarized as: i) proposing a real-time stereo pipeline
that creates realistic 3D volumes for slant-based scenarios; ii)
investigating the acceleration that multiple GPUs can provide
to the pipeline, for creating a real-time 3D volume genera-
tor; and iii) analysing how the quality of the final 3D volume
depends on the variation of the aggregation window size.

2. STEREO ALGORITHM PHASES

Stereo Algorithms comprise of one or more of the following:

1. Matching cost;

2. Cost (support) aggregation;

3. Disparity computation;

4. Disparity refinement.

This paper focus on the final three steps, as the SymStereo
matching cost pipeline was already addressed on [3]. Addi-
tionally, we add a fifth step to our study, the ’Disparity to 3D’
step, where 3D coordinates are calculated to generate a 3D
volume of the 2D disparity maps.

2.1. Cost aggregation and disparity computation

After the calculation of matching costs, the best disparity for
each pixel must be chosen from the DSI [4]. In order to
achieve this, two types of aggregation algorithms can be used:
local or global ones. While local algorithms use a window-
based approach [5], global algorithms tend to solve a global
optimization problem by finding the best disparity that min-
imizes a global cost function that is composed by data and
smoothness terms [6].

Despite usually producing better results, global algo-
rithms are computationally heavier and not all can be paral-
lelized. This is the main reason why we use a window-based
algorithm for the cost aggregation phase.



In Fig.2 we illustrate this phase. We calculate the sum of
the matching costs over a square window for each image pixel
and each disparity. The most accurate disparity will then be
chosen by a WTA (winner-takes-all) strategy [6].

Thread Block 

...
...

...

DSI

d0

d1

dD

Grid

Block 

(0,0)

Block 

(0,1)

Block 

(0,M-1)

Block 

(N-1,0)

Block 

(N-1,M-1)

Thread k Thread k+5

Fig. 1. Aggregation phase with window size 3 on the GPU.
(M,N) are the number of blocks in the (x, y) directions.

2.2. Disparity refinement

The disparity refinement stage can be divided in two sub-
stages: left-right consistency check and filling of occluded
pixels. Occluded pixels belong to objects that are in the left
image but are not in the right one.

2.2.1. Left-Right Consistency Check

The left-right consistency check uses two disparity maps, one
computed with the left image as the reference and the other
with the right image. This way, we can subtract the disparities
of corresponding pixels in each image. If the difference is less
than a given threshold, the pixel is occluded.

2.2.2. Filling of Occluded Pixels

To fill the occluded pixels, we use an algorithm that performs
a 4-way search for the first non-occluded pixel in each way.
The disparity selected is the median between the four values
that were found.

2.3. From Disparity Maps to 3D

To calculate the 3D coordinates for each pixel, we use the
equations that map 2D coordinates to 3D:

Z = (f ∗ baseline)/D; (1)
X = ((x− sx) ∗ Z)/f ; (2)
Y = ((y − sy) ∗ Z)/f ; (3)

where f is the focal length (in pixels), baseline is the distance
between the two lens (in metres), sx and sy are the image
centres (in pixels) and D is the disparity of the pixel.

3. PARALLELIZING 3D PIPELINE

In order to calculate 3D maps in real-time, we use two Nvidia
GTX Titan GPUs to accelerate processing. We exploit a hy-
brid architecture, taking advantage of both CPU and GPUs.

Aggregation

SymStereo

I1

DSI

I2

G

Aggregation

SymStereo

I'1

DSI

I'2

LRCCheck

DispMap1

DispMap0

2D-3D

3D Map

DispMap0

GPU0 GPU1

Disp. Enhan.

CPU

DispMap0

Fig. 2. 3D Pipeline representation, where I1 and I2 are the
left and right images, I ′1 and I ′2 are the left and right images
flipped and G are the Gabor coefficients

Since data transfers from the CPU to the GPU consume
a significant amount of time to complete, we try to minimize
their impact. Data allocations are pageable in the CPU by de-
fault. Since the GPU cannot access data from pageable mem-
ory, when a transfer is called, data has to be transferred to a
temporary pinned array and only then it is transferred to the
device. To avoid this, we always make pinned allocations in
the host, saving time in data transfers.

3.1. Disparity Calculation

For this step, each thread, corresponding to one pixel, calcu-
lates the sum of the matching costs over the defined square
window, for each disparity, and chooses the disparity with the
highest sum of costs (Fig.2). The amount of data processed
depends on the disparity range we choose at the beginning of
the pipeline and window size. We can evaluate this in Fig.3.
By increasing the window size, not only will there be more
processing time involved but there will also be more accesses
to global memory. To overcome this problem, we tested the
use of shared memory but the quantity of data we would had
to transfer for each block penalised execution time.



55.09% 36.26%

6.16%

0.03%
0.05%
2.41%

32.44%

62.47%

3.62%
0.02%

1.42%
0.03%

Fig. 3. Workload variation by changing the aggregation win-
dow from 9 to 15 on a 768× 1024 pixels image

3.2. Pixel consistency and filling

In order to perform the consistency check, we have to calcu-
late two disparity maps. To accelerate this step, we used two
GPUs in parallel, each one calculating one of the necessary
maps. As in the previous step, each thread will be responsible
for the verification of the consistency of a pixel.

To fill the occluded pixels we use an algorithm that cannot
be parallelized. This way, we have to transfer data from the
GPU to the CPU. At the end of the process, data is brought
back to the device’s memory.

3.3. 3D Reconstruction

For each pixel, a thread is responsible for calculating the three
coordinates necessary to generate the 3D map. When all the
pixels are processed, data is transferred from the device to the
host.

4. APPARATUS AND EXPERIMENTAL RESULTS

The proposed reconstruction was developed using CUDA 6.5
and the reconstructed images shown herein were processed on
a GeForce GTX Titan dual-GPU workstation with an i74770k
@ 3.5 GHz running CentOS and GCC 4.4.7. To visualize the
3D maps we used MeshLab v1.3.2. The developed framework
scales with the number of available hardware resources and
can be ported to run in other multicore architectures [7].

4.1. 3D Reconstruction Results

In order to enhance our results, we decided to alter the win-
dow size of the aggregation stage. This alteration was applied
to three sets of images, one from the Tsukuba set (288x324
pixels), one from the Kitty Dataset [8] (375x1242 pixels)
and another one captured by us (768x1024 pixels). We can
observe the aggregation phase processing times depending on
the window size and image dimensions in Table 1.

Table 1. Aggregation time (ms) varying the the window size
Image Resolution

Window Size 768x1024 375x1242 288X384

9 78.46 51.46 1.99
11 127.26 84.76 2.99
13 171.63 115.94 4.11
15 212.48 140.19 5.46

To perform the 3D Reconstruction of the images, we used
f = 748 pixels, baseline = 0.032 meters, sx = 0.5 pixels
and sy = 0.5 pixels for Tsukuba; f = 707 pixels, baseline =
0.537151 meters, sx = 0.484611 pixels and sy = 0.488294
pixels for the Kitty Dataset image; and f = 1285 pixels,
baseline = 0.239855 meters, sx = 0.515791 pixels and
sy = 0.497786 pixels for our image.

(a) Tsukuba 3D from [10] (b) Tsukuba 3D from our method

Fig. 4. Tsukuba 3D reconstruction comparing [10] with our
method for 16 disparities

In Fig.4, we compare the 3D reconstruction for the
Tsukuba image set. We selected a disparity range ranging
from 0 to 15, as suggested in [6], for our method. Despite
some discontinuity errors, mainly in the top right corner, our
reconstruction is pretty accurate.

In Fig.5, we have the 3D reconstructions of the Kitty
dataset image and our own image. These were computed
with a disparity range of 15 to 125, since they are images
with a larger resolution. In the analysis we notice some bad
reconstructed pixels. The SymStereo matching cost struggles
with shadows, reflections and luminosity variations between
the left and right image. By increasing the length of the aggre-
gation window, we minimize these effects but lose definition
on the discontinuities.

Comparing the image of the Kitty dataset with ours, we
see that our image presents better results. Despite both images
having a high level of slanted surfaces, the image of the Kitty
Dataset has more discontinuities (e.g. trees, cars, signs), than
our image. This corroborates with what was shown in [2], that
symmetry-based algorithms have a superior behaviour with
less textured and high slanted surfaces.

In Table 2, we can verify the computation times that each
phase take on the GPU, except for the occluded pixel filling
algorithm that processes on the CPU. For the Tsukuba image,
we were able to achieve up to 124 fps, for the Kitty dataset
image we obtained up to 6.5 fps and for our image we mea-
sured up to 4.5 fps.



(a) Kitty dataset (b) Aggregation window=9 (c) Aggregation window=15

(a) Our dataset (b) Aggregation window=9 (c) Aggregation window=15

Fig. 5. Aggregation window size influence in 3D reconstruction: a) Front reconstructed image; b, c) Side reconstructed image

Table 2. Pipeline tasks time (ms) for each image dimension
Image Resolution

768x1024 375x1242 288X384

SymStereo 127.51 94.28 4.91
LRCCheck 0.06 0.05 0.02

Disp. Enhan. 15.98 8.58 1.11
2D-3D 0.10 0.08 0.03

4.2. Speedup

For our experiment, dedicating two GPUs for image process-
ing is a major advantage since we are able to compute the two
disparity maps necessary for left right consistency check in
parallel. Hereupon, with an aggregation window of size 9,
the Tsukuba image takes approximately 2.5 seconds to pro-
cess on the CPU. We managed to speedup the code 318×. For
the Kitty dataset image, we accelerated our program 438×,
since its serial counterpart takes 68 seconds to complete. Fi-
nally, for our image, we achieved a speedup of 505×, has it
consumes 112 seconds to generate a 3D map.

5. RELATION TO PRIOR WORK

Using GPUs for stereo matching has become a recurring
practice nowadays. With the parallel power of these devices,
algorithms are becoming increasingly faster, which enables
to achieve real-time stereo matching performance. Adding
more stages to the stereo algorithm adds complexity but it also
yields better results in the final output. Like us, Kowalczuk
et al. [9] implements a complex stereo algorithm on a GPU,
using an iterative refinement technique for correspondences

with adaptive support-weight. With two aggregation stages,
two refinement stages and consistency check, they achieve a
rate of 62 fps in small images. Our method has less stages
and achieves 124 fps in images with the same dimension.

Regarding 3D reconstruction, Denker et al. [10] uses
multi-camera systems for face recognition and achieves a
frame rate of about 4 fps with a 1392×1032 resolution, while
in [11] developed a real-time 3D face-measurement system
capable of analysing 6000 to 7000 3D points in 15 fps.

Only once was the SymStereo framework presented in [2]
brought on to the GPU. Mota et al. [3] implemented the al-
gorithm and achieved 53 fps for small images and 3 fps for
high resolution images. We improved on his work, accelerat-
ing the framework, adding three more stages for better visual
results and 3D reconstruction, and implementing them on a
dual GPU system. With this, we achieved a frame rate of 124
fps for small images and of 4.5 fps for high resolution images.

6. CONCLUSIONS AND FUTURE WORK

This work presented a real-time pipeline for 3D reconstruc-
tion that achieves high rates, with 124 fps for small images
and 4.5 fps for high resolution ones.

We intend to investigate and apply new types of parallel
aggregation algorithms with the objective of enhancing the
generated 3D map. Also, we aim to improve processing times
by adopting streams on the CUDA code.

7. REFERENCES

[1] M. Antunes and J.P. Barreto, “Stereo estimation of depth
along virtual cut planes,” in Computer Vision Workshops



(ICCV Workshops), 2011 IEEE International Confer-
ence on, 2011, pp. 2026–2033.

[2] Michel Antunes and João P Barreto, “Symstereo: Stereo
matching using induced symmetry,” International Jour-
nal of Computer Vision, pp. 1–22, 2014.

[3] Vasco Mota, Gabriel Falcao, Michel Antunes, Joao Bar-
reto, and Urbano Nunes, “Using the gpu for fast
symmetry-based dense stereo matching in high resolu-
tion images,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 7520–7524.

[4] R. Szeliski and D. Scharstein, “Sampling the dispar-
ity space image,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 26, no. 3, pp. 419–
425, March 2004.

[5] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addi-
manda, “Classification and evaluation of cost aggrega-
tion methods for stereo correspondence,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, June 2008, pp. 1–8.

[6] Daniel Scharstein and Richard Szeliski, “A taxonomy
and evaluation of dense two-frame stereo correspon-
dence algorithms,” International Journal of Computer
Vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[7] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable
ldpc decoding on multicores using opencl [applications
corner],” Signal Processing Magazine, IEEE, vol. 29,
no. 4, pp. 81–109, July 2012.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are
we ready for autonomous driving? the kitti vision
benchmark suite,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[9] J. Kowalczuk, E.T. Psota, and L.C. Perez, “Real-time
stereo matching on cuda using an iterative refinement
method for adaptive support-weight correspondences,”
Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 23, no. 1, pp. 94–104, Jan 2013.

[10] Klaus Denker and Georg Umlauf, “Accurate real-time
multi-camera stereo-matching on the gpu for 3d recon-
struction.,” Journal of WSCG, vol. 19, no. 1, pp. 9–16,
2011.

[11] M. Miura, K. Fudano, K. Ito, T. Aoki, H. Takizawa, and
H. Kobayashi, “GPU implementation of phase-based
stereo correspondence and its application,” in Image
Processing (ICIP), 2012 19th IEEE International Con-
ference on, 2012, pp. 1697–1700.


